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Chapter 1
Star-P® Introduction  

Star-P® drives productivity by significantly increasing application performance while keeping 
development costs low. It is intended for scientists, engineers and analysts with large and 
complex problems that cannot be solved productively on a desktop computer. The Star-P® 
software platform seamlessly integrates desktop clients with high-performance servers. By 
offloading computation, memory and file intensive operations to the server, Star-P® enables 
easy to use desktop application development, while creating the potential for execution at 
supercomputer speeds. 

Star-P® extends easy to use Very High Level Languages (VHLLs) such as MATLAB®1 and 
Python to support simple, user-friendly parallel computing on a spectrum of computing 
architectures:  multi-core desktops and servers, large shared memory servers, and clusters. 
Star-P® fundamentally transforms the workflow, substantially shortening the “time to solution” 
by allowing the user to easily adapt their application for use on parallel resources. 

This chapter provides an overview of using Star-P® in the MATLAB® VHLL environment. It 
includes sections on the following topics:

• “Extending MATLAB with Star-P®” describes how Star-P® parallelizes MATLAB 
programs with minimal modification.

• “Parallel Computing Basics” introduces you to the various domains of parallel 
computing and how Star-P® fits into various domains.

• “About the Star-P® Programming Guide for Use with MATLAB®” summarizes the 
topics covered in this document.

1. MATLAB® is a registered trademark of The MathWorks, Inc. Star-P® and the "star" logo are reg-
istered trademarks of Interactive Supercomputing, Inc. Other product or brand names are trade-
marks or registered trademarks of their respective holders. ISC's products are not sponsored or 
endorsed by The MathWorks, Inc. or by any other trademark owner referred to in this docu-
ment.
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Extending MATLAB with Star-P®

With Star-P®, existing MATLAB scripts and functions can be re-used to run larger problems in 
parallel with minimal modification, and new parallel MATLAB code can be developed in a 
fraction of the time normally required to develop parallel applications in traditional 
programming languages, such as C, C++, or Fortran with MPI.   Parallel programming with 
Star-P® in MATLAB requires learning a bare minimum of additional programming constructs. 
Implementing Data Parallelism with Star-P® does not require the addition of any new 
functions to your MATLAB code, and adding Task Parallelism requires only one additional 
construct.

To implement Data Parallelism, Star-P® overloads ordinary MATLAB commands with the *p 
construct. This simply multiplies (*) array dimension(s) by a symbolic variable (p) denoting 
that a matrix dimension is to be distributed. A class of overloaded MATLAB programs 
becomes parallel with the insertion of this construct. The *p syntax tells data construction 
routines (for example, rand) to build the matrix on the parallel HPC back-end, and perform 
the indicated operation (for example, matrix inversion) there as well. Creating a distributed 
random matrix and taking its inverse with MATLAB can be expressed with the following two 
lines of code:

A = rand(100,100);
B = inv(A);

To express the same operations in Data Parallel using Star-P®, requires only one slight 
change:

App = rand(100,100*p);
Bpp = inv(App);

Once the *p construct has been applied to a variable, all subsequent operations on that 
variable will occur in parallel on the HPC and result in new variables that are also resident on 
the HPC. This important inheritance feature of Star-P® allows you to parallelize your MATLAB 
code with minimal effort. For more information on distributed data operations, see “Data 
Parallelism with Star-P® and MATLAB”. 

For implementing Task Parallel functionality, Star-P® introduces the ppeval function into 
MATLAB. The ppeval function, which is called in a similar manner as the MATLAB function 
feval, allows one to pass a string containing a valid MATLAB function foo as well as all of 
foo’s calling arguments. The ppeval function then packages foo, along with all functions 
called within foo, and ships those functions to the HPC server. The calling arguments of foo 
are also shipped to the HPC and can be either broadcast to all processors using the bcast 
function or split amongst the processors using the split function. 

The following code is an example usage of the ppeval function:

App = rand(100,100,100*p);
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Bpp = ppeval('inv',App); 

Or equivalently:
 
Bpp = ppeval('inv',split(App,3));

In this example, the ppeval call splits the variable App into 100 individual slices (along the 
last dimension). The slices are divided among available processors on the server, and then 
each processor iterates over its received slices, performing an inv operation on each slice. 
The results from all processors are then combined, preserving original order, and returned as 
the output variable. More information about task parallel functionality can be found in “Task 
Parallelism with Star-P® and MATLAB”

To use Star-P® with MATLAB, the user needs only one copy of the Mathworks’ product to 
serve as a front-end, which need not be the parallel machine. No copies of MATLAB are 
required on the parallel computer.

Users have the benefit of working in the familiar MATLAB environment. When new releases 
of MATLAB are distributed, the user merely plugs in the new copy and Star-P® continues to 
execute.

Despite Star-P®’s ability to add functionality for distributed matrices and parallel operations, 
don’t forget that you are still using MATLAB as your desktop development tool. This means 
that you can run an existing MATLAB program in Star-P® with almost no changes, and it will 
run strictly on your desktop (client) machine, never invoking the Star-P® system after 
initialization. Of course, this would be a waste of HPC resources, if you ran this way all the 
time. But it is a convenient way of porting the compute-intensive portions of your code one at 
a time, allowing the unported portions to execute in MATLAB proper. 

In the Star-P® context, there are many features of the MATLAB environment that are still 
relevant for developing applications with distributed objects and operations. The MATLAB 
debugger and the script and function editor are two of the most useful MATLAB functions 
when you’re programming with Star-P®. The designers of Star-P® have taken great pains to 
fit within the MATLAB mindset, using the approach “It’s still MATLAB.” So if you’re wondering 
whether a MATLAB operation works in Star-P®, just try it. Most operations work in the 
obvious way.

Note:  If a MATLAB function that has high value for you does not work, please let us 
know via support@interactivesupercomputing.com

Star-P® greatly simplifies the parallelization of new and existing MATLAB code by allowing 
the user to either run code on the local MATLAB client or on the HPC back-end appropriately 
taking advantage of the respective strengths. 
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Parallel Computing Basics

This section reviews various domains of parallel computing. We present these concepts for 
users who are new to parallel computing and then discuss their implementation by Star-P®. 

Parallel computing textbooks list many models for parallelizing programs, including:

• Data Parallel Computation

• Message Passing

• Task Parallel Computation

You may wish to go to a website that has several points related to parallel computing, such 
as, http://beowulf.csail.mit.edu/18.337 or any of the numbers of textbooks that cover these 
topics. In brief, the current version of Star-P® is best expressed as a data parallel language or 
a global array language. The prototypical example of data parallelism is matrix addition:

Cpp = App + Bpp;

where App and Bpp are matrices. When we add two n-by-n matrices, we perform n2 data 
parallel additions. In other words, we perform the same operation (addition) simultaneously 
on each of the n2 numbers.

The name “data parallel” is often extended to operations that have communication of 
dependencies among some of the operations, but at some level can be viewed as identical 
operations happening purely in parallel. Two simple examples are matrix multiplication 
(Cpp=App*Bpp) and prefix sums (Dpp=cumsum(App)).

A beneficial description of Star-P® for many users is that Star-P® is a global array syntax 
language. By providing a global array syntax in Star-P®, the user variable App refers to the 
entirety of a distributed object on the back end server. The abstraction of an array that 
contains many elements is a powerful construct. With one variable name such as App, you 
are able to package up a large collection of numbers. This construct enables higher level 
mathematical operations expressed with a minimal amount of notation. On a parallel 
computer, this construct allows you to consider data on many processors as one entity.

By contrast, message passing or “node-oriented” languages force you as a programmer to 
consider only local data and create any global entity completely outside the scope of the 
language. Data is passed around through explicit calls to routines such as send and 
receive or SHMEM get and put. The lack of support for the global entity places more of a 
cognitive burden on you, the programmer. Star-P® allows users to implement their programs 
in parallel without having to master the intricacies of MPI in Fortran, C, or C++.

“Task parallel” or “embarrassingly parallel” computations are those operations where there is 
little or no dependency among the computational pieces. Each piece can easily be placed on 
a distinct processor. While not strictly required, such computations typically depend on a 
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relatively small amount of input data, and produce relatively small amounts of output data. In 
such circumstances, the implementation may not store any persistent data on distributed 
memory. An example is Monte Carlo simulation of financial instruments, where the 
calculations for each sample are done completely in isolation from every other sample. While 
Star-P® may be considered a data parallel language, it also has task parallel functionality 
through the use of its ppeval operation.

Most of the operations for which Star-P® will deliver good performance will be operations on 
global arrays, so most of this document treats arrays as global arrays. An important exception 
to this is the ppeval function, which supports task parallelism and works on global arrays, 
but in a less straightforward manner. A global array that is an input to the ppeval function is 
partitioned into sections, each of which is converted to an array that is local to a single 
instance of a MATLAB function on a single processor. The reverse process is used for output 
arrays; the assemblage of the sections into global arrays.

About the Star-P® Programming Guide for Use with MATLAB®

The remainder of this document provides chapters that cover the following topics:

• “Starting Star-P® with MATLAB” takes you through a sample session to illustrate 
how to start up Star-P® from a graphical or command line interface with various 
command-line options. A simple program is shown that illustrates the use of 
Star-P®’s ability to parallelize MATLAB code. 

• “Data Parallelism with Star-P® and MATLAB” describes Star-P®’s global-array 
language capabilities for creating, manipulating, loading and saving large distributed 
data. 

• “Task Parallelism with Star-P® and MATLAB” describes Star-P®’s ppeval function 
for performing embarrassingly parallel operations on either local or distributed data.

• “Tips and Tools for High Performance Star-P® Code” provides suggestions for 
maximizing the performance of code written for both data and task parallel 
computations, and describes tools for monitoring and profiling MATLAB code using 
Star-P®.

• “Star-P® Functions” summarizes functions that are not part of the standard MATLAB 
language and describes their implementation.

• “Supported MATLAB® Functions” lists the MATLAB functions that are supported in 
both data and task parallel modes, as well as MATLAB toolbox functions that are 
supported only in task parallel computations.
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 5



About the Star-P® Programming Guide for Use with MATLAB®
6 Star-P® Programming Guide for Use with MATLAB® Release 2.7



Chapter 2
Starting Star-P® with MATLAB

This chapter is intended for users who have a working Star-P® installation on a client system 
as well as a high performance computing server. It includes the following topics:

• "Getting Help at the IDE Window" explains how to use and invoke help.

• "Starting Star-P® on a Linux Client System" provides information for users running 
Star-P® under Linux.

• "Starting Star-P® on a Windows Client System" provides information for users running 
Star-P® under Windows

• "Star-P® Dashboard" includes information on a graphic window provided by Star-P® 
for monitoring server status at start-up and a means of killing a Star-P® server 
session. 

• "Star-P® Sample Session" walks you through a few short example operations that 
can be performed in a working Star-P® session.

• "User Specific Star-P® Start-Up Configuration" includes information for users 
wishing to configure particular start-up options within a start-up script.

• "Star-P® Start-Up Command Line Options" provides information about launching a 
desired Star-P® session from a terminal command prompt.

Getting Help at the IDE Window

When working at the IDE, you can invoke online help in the following ways:

• Using the HTML-Based Help

• Using the Text-Based Help

• Getting Command Syntax Information
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 7



Getting Help at the IDE Window
Using the HTML-Based Help

You can get Star-P® HTML-based help within the MATLAB IDE by entering the starpdoc 
command. 

>> starpdoc rosser

You can also get information on how to use starphelp by using the MATLAB command help. 
For example:

>> help starpdoc
starpdoc Get browser-displayed help related to Star-P® parallel computing

Syntax 1:

starpdoc  % Bring up the main Star-P® online help page

Syntax 2:

starpdoc <Star-P®-M-function-name> | <Star-P®-M-library-name> | syntax

Using the Text-Based Help

You can get Star-P® HTML-based help within the MATLAB IDE by entering the starpdoc 
command. 

>> starphelp rosser

You can also get information on how to use starphelp by using the MATLAB command help. 
For example:

 
>> help starpdoc
starpdoc Get text-display help related to Star-P® parallel computing

Syntax 1:

starphelp  % Bring up the main list of Star-P® help

Syntax 2:

starphelp <Star-P®-M-function-name> | <Star-P®-M-library-name> | syntax

Getting Command Syntax Information

You can get Star-P®-specific conventions and syntax information by way of the following 
methods:

• Syntax grammar and conventions used in the Star-P® documentation

• Get syntax information for a particular function
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Syntax grammar and conventions used in the Star-P® documentation

For general syntax grammar usage and conventions, you can invoke either starphelp or 
starpdoc using the <syntax> option. 

 
>> starphelp syntax

Syntax Grammar Conventions for Star-P® M Documentation
------------------------------------------------------

Convention...                               Meaning...

Get syntax information for a particular function

You can individual functions by calling either form of Star-P® help with a function name as its 
argument. 

 
>> starphelp rosser
cross Return the cross product of two vectors

Syntax 1:
<vector-cross-product> = cross( <input-vector-1> , <input-vector-1> )

Starting Star-P® on a Linux Client System

Your system administrator will usually have installed the Star-P® software on the systems 
(client(s) and server) you will be running on in advance. The default location of the starp 
software is /usr/local/starp/<version>. Assuming this install location is in your shell 
path, then the following sequence will start the Star-P® client (on a system named 
your_system) and connect to the Star-P® server configured by the administrator, which 
happens to be a system named remote_server.

your_system% starp
user@remote_server’s password: **********
                                   < M A T L A B >
                       Copyright 1984-2009 The MathWorks, Inc.
 
  To get started, type one of these: helpwin, helpdesk, or demo.
  For product information, visit www.mathworks.com.

Connecting to Star-P® Server with 2 processes

Star-P® Version 2.7.0
(C) 2004-2008, Interactive Supercomputing, Inc. All rights reserved.
Portions (C) Copyright 2003-2004 Massachusetts Institute of Technology. All 
rights reserved.
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By using this software you agree to the terms and conditions described 
in the license agreement.  Type help agreement
client log file: /home_directory/.starp/log/2008_04_05_1111_54/starpclient.log
 >>

As you can see, the HPC server will typically require a password for user authentication. You 
will either need to supply this password upon every start-up or configure SSH so it is not 
needed on every session initiation. Otherwise, there are few visible signs that the Star-P® 
server is running on a distinct machine from your client.

This last line (“>>”) is the MATLAB prompt. At this point you can type the commands and 
operators that you are familiar with using from prior MATLAB experience, and can start to use 
the Star-P® extensions described in “Data Parallelism with Star-P® and MATLAB” and “Task 
Parallelism with Star-P® and MATLAB”.

A full description of the starp command and its command line options is provided in the 
section “Star-P® Functions”, or by typing the following at the command prompt:

$ ./starp --help

Starting Star-P® on a Windows Client System

By default, the Star-P® installation on a Windows XP system will create a shortcut on the 
desktop, as well as an entry in the list of programs under the Windows Start menu.

The default location for the Star-P® programs will be C:\Program Files\starp; if you 
can’t find them there, check with your system administrator to see if an alternate location was 
used. For installation instructions, see the “Star-P® Installation and Configuration Guide”.

To invoke the Star-P® software, either double-click the desktop icon, or click on:

Start -> All Programs -> Star-P® Client Software -> Star-P® M Client
Figure 2-1  Star-P® Desktop icon
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Star-P® Dashboard
Figure 2-2  Star-P® Login screen

If passwordless SSH has not been configured for the user name in your current Star-P® 
properties configuration file (the default file being starpd.properties), a dialogue box will 
appear prompting you for a password. If no user name appears in the configuration file, then 
the user name associated with your current Windows session will be utilized.

Once the connection has been established, MATLAB will start, with Star-P® enabled.

Star-P® can also be started from a Windows command line prompt using the starp 
command. A full description of the starp command and its options is provided in the section 
“Star-P® Start-Up Command Line Options”, or type starp --help at the Windows 
command line.

Star-P® Dashboard

The Star-P® Dashboard is designed to 

• inform the user of the progress of Star-P® server startup 

• inform the user of the connection status of the Star-P® client and server 

• provide an interface to allow the user to kill the server should it be necessary.
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Star-P® Dashboard
Figure 2-3  Star-P® Dashboard Interface

The Server Status window displays information about the server startup process and 
information about the success or failure of Kill button operations. 

The Server Status window displays information about the server startup process, information 
about connectivity to the server, and information about the success or failure of kill button 
operations. 

The server status light on the dashboard provides a simple visual indicator representing the 
primary set of possible states. At any time, it may display one of the following values:

• Server Initializing

• Server Ready

• Server Busy

• Connection Lost

During the start-up phase, the dashboard will indicate that the server is initializing. Then 
when a command is submitted to the server, it switches to the “busy” state, and returns to the 
“ready” state when the command completes. If connectivity to the server is lost at any time, 
this will be reflected by the status light. Connectivity is tested by periodic heartbeats that pass 
between the client and the server. 

By default, the dashboard always appears when connecting to the Star-P® server. The 
dashboard can then be hidden or shown using the following pair of commands, which take no 
arguments:

ppshowdashboard
pphidedashboard

If you desire to change the default settings for dashboard initialization, then you can 
uncomment the environment variable line starpd.dashboard.no_gui=1 in the 
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starpd.properties file, located in the /<Star-P® install directory>/config 
directory. By initializing a Star-P® session with this setting, the Star-P® dashboard is not 
accessible during that Star-P® session.

The Kill Star-P® Server button is not intended for routine use, but only for situations where the 
user is unable to exit Star-P® in the usual way. Upon pressing the Kill Star-P® Server button, 
the user will click Yes when the confirmation dialog appears.

Figure 2-4  Star-P® Kill Button Confirmation

The Star-P® Dashboard opens set to Always On Top mode. However it can be minimized or 
the user can unset Always On Top using the View menu. 

If you are running Star-P® on a system without graphical display capability (for example, a 
UNIX shell with no DISPLAY environment set), the Dashboard will not be visible or 
accessible. 

Star-P® Sample Session

The use of Star-P® can best be illustrated with a sample session:

First, we check to see whether the server is alive, and the number of processes running.

>> np
ans =
8

Next, we create a 100x100 random dense matrix distributed by columns.

>> App = rand(100,100*p); 
App =
        ddense object: 100-by-100p 
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Then, we create a 100x100 random dense matrix distributed by rows.

>> Bpp = randn(100*p,100);

Using a standard MATLAB instruction, we can solve the system AX=B:

>> Xpp = App\Bpp;

Now we can check the accuracy of our answer.

>> norm(App*Xpp-Bpp)
ans =
3.4621e-13                                                 

Next we can get information about variables in our current workspace.

>> ppwhos                                                     
Your variables are:                                           
  Name       Size          Bytes      Class                   
  App        100x100p      80000      ddense array            
  Bpp        100px100      80000      ddense array            
  Xpp        100px100      80000      ddense array            
  ans        1x1           8          double array            
Grand total is 30001 elements using 240008 bytes              
MATLAB has a total of 1 elements using 8 bytes                

Star-P® server has a total of 30000 elements using 240000 bytes

Finally, to end Star-P® execution, you can use either the quit or the exit command:

 >> quit
your_system =>

At this point you are ready to write a Star-P® program or port a MATLAB program to Star-P®.

User Specific Star-P® Start-Up Configuration

You may have a set of Star-P® options that you want to choose every time you run Star-P®. 
Just as MATLAB will execute a startup.m file in the current working directory when you 
start MATLAB, Star-P® will execute a ppstartup.m file. Note that Star-P® itself executes 
some initial commands to create the link between the Star-P® Client for use with MATLAB 
and the Star-P® server. The ppstartup.m file will be executed after those Star-P® 
initialization commands. Thus the order of execution is:

• startup.m       % MATLAB configuration commands

• Star-P®-internal initialization commands

• ppstartup.m     % Your Star-P® configuration commands
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For example, this mechanism can be useful for choosing a particular sparse linear solver to 
use (see “ppsetoption” documentation in “Star-P® Functions”) or for loading your own 
packages (see the “Star-P® Software Development Kit (SDK) Tutorial and Reference 
Guide”). 

Star-P® Start-Up Command Line Options

Star-P® can be used with default options enabled, but advanced users might prefer to 
override defaults at start-up time. The start-up executable is named starp. The starp 
application reads its default start-up options from the starpd.properties file. For 
information on how to edit these properties directly, please see the section titled 
Administration Topics in the Star-P® Installation and Configuration Guide.

Note: You can get help regarding Star-P® startup options by executing the following 
command: starp --help.

 The starp executable provides the following command line options:

• -a, --hpcaddress hpcaddress[node1,node2,node3,...,nodeN] 

Hostname or address of HPC to which to connect. Also may be a comma delimited list 
of machines comprising a cluster, head node first.

• -c, --config config_file 

The configuration file to load.

• -d <pack> | <scatter>

Distribute Star-P® processes when not using a workload manager. Where acceptable 
values are one of the following:

• -e, --serverenv <serverenv>  

Environment variables to be set on the server

• -f, --filter 

Option Value Description

scatter Distribute processes in a round-robin fashion. Default.

pack Fill up individual nodes before allocating processes on 
additional nodes.
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Run MATLAB in filter mode so that it reads from stdin and writes to stdout, for 
testing. 

• -h, --help

Print help text associated with the other arguments you provide.

• -j, --wlmargs <wlmargs>  

Arguments to be passed to the Workload Manager. These arguments will override 
default Workload Manager options normally supplied by Star-P®.

• -l, --license <license>  

Specify the location of the license file (overriding LM_LICENSE_FILE)

• -m, --machine <machine>  

Specify a machine file (must be a client side file)

• -o, --cfgopt <cfgopt=value>  

Set a configuration file option

• -p, --numprocs numprocs 

Number of processes to request.

• -q, --wlmqueue <wlmqueue>  

Workload Manager queue to be used by this Star-P® session

• -r, --startcommand <startcommand>  

Start Star-P® and execute the command <startcommand>

• -s, --starppath starp_path 

Path to Star-P® installation on the HPC 

• --sshport <sshport>  

Specify a non-standard SSH port for communication with the HPC server

• -t, --datadir data_path 

Path that will be used by the HPC Server for file I/O. Star-P® HPC Server reads and 
writes data to the directory you specify with this path.

• -u, --hpcuser 
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username used to SSH to HPC 

• -v, --version 

Print the Star-P® version number and exit

• -w, --wlmextra <wlmextra>  

Extra arguments to be passed to the Workload Manager, will not override Workload 
Manager options normally supplied by Star-P®.

• -x, --exclude <exclude>  

Specify which nodes of a cluster not to use (mutually exclusive with “use”)

• -z, --use <use>

Specify which nodes of a cluster to use (mutually exclusive with “exclude”)

When running in a cluster, it is also useful to understand the precedence order of potential 
machine files. 

• Any nodes specified in a machine file passed in using -m, or specified in a -x or -z 
option that are not also included in the default machine file, will not be used by 
<starp>. 

• A user default machine file 
(~/.starp/.config/machine_file.user_default) by default, or, 
<starp-usr-config>/<usr>/ if overwritten during the installation, will take 
precedence over the system default machine file 
(<StarP_dir>/config/machine_file.system_default) and will not need 
to represent a subset of the system default machine file. 

• -m,--machine machine_file_path 

The path to a machine file to be used for this instance of starp. The file format is one 
machine name per line, with no empty lines at the end of the file. node specified by -a 
argument must be included in the file. Example contents of this file would be: node1 
node2 ... nodeN 

• -x,--exclude [node] or [node1,node2,...,nodeN] or 
[node2-nodeN]

Exclude a node, a set of nodes or a range of nodes from the current instance of starp. 
This argument will be used as a modifier against either a machine file passed in using 
the -m argument, or against either the user's or the system's default machine file. This 
flag is mutually exclusive with -z. 

• -z,--use [node] or [node1,node2,...,nodeN] or [node2-nodeN] 

Use a node, a set of nodes or a range of nodes for the current instance of starp. This 
argument will be used as a modifier against either a machine file passed in using the 
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-m argument, or against either the user's or the system's default machine file. This flag 
is mutually exclusive with -x. 

By providing command-line options, you can override some of the information normally 
supplied by the starpd.properties file. The following example shows the minimal set of 
command-line options required for running Star-P®. In this case, the command would cause 
MATLAB to start up, running eight Star-P® Server processes on a machine with the 
hostname altix as the user joe: 

starp -a altix -p 8 -s /usr/local/starp -u joe -t /home/joe 

Examples

The following are useful examples: 

• If you are running on a cluster and you want to specify a list of nodes in the cluster 
to be excluded from a particular run of <starp> (perhaps node3 and node7 are 
down for maintenance), your <starp> command line would look like this: 

starp -a node1 -x node3,node7 -p 8 -s /usr/local/starp -u joe -t /home/joe

Using this command line, a new machine file for this one run of <starp> will be 
generated using the default machine file, but with node3 and node7 removed. 

Note: If node3 or node7 are not members of the default machine file, they will be ignored 
as defined in Cluster Configurations at the end of this section.

• If you are running on a cluster and you want to specify a range of nodes in the cluster 
to be excluded from a particular run of <starp> (perhaps a rack of nodes has been 
taken offline), your <starp> command line would look like this: 

starp -a node1 -x node3-node14 -p 8 -s /usr/local/starp -u joe -t /home/joe

Using this command line, a new machine file for this one run of <starp> will be 
generated using the default machine file, but with node3 through node14 utilized. 

Note: If either node3 or node14 are not members of the default machine file, <starp> 
will return a "bad range" error. 

Note: If node14 appears before node3 in the default machine file, <starp> will return 
a "bad range" error. 

• If you are running on a cluster and you want to specify a custom machine file for a 
particular run of <starp>, your <starp> command line would look like this: 

starp -a node1 -m [machine file path] -p 8 -s /usr/local/starp -u joe -t 
/home/joe

Using this command line, the machine file specified by [machine file path] will 
be used for this one run of <starp>. 
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Note: The machine file specified by [machine file path] must represent a subset of the 
user's or system's default machine file. 

• If you are running on a cluster and you want to specify a custom machine file for a 
particular run of <starp> and you only want to use a subset of that machine file, 
your <starp> command line would look like this: 

starp -a node1 -m [machine file path] -z node3-node14 -p 8 -s /usr/local/starp 
-u joe -t /home/joe

Using this command line, the machine file specified by [machine file path] will be used 
for this one run of <starp>. 

Note: The machine file specified by [machine file path] must represent a subset 
of the user's or system's default machine file.

Note:  If either node3 or node14 are not members of the default machine file, <starp> 
will return a "bad range" error.

Note:  If node14 appears before node3 in the default machine file, <starp> will return 
a "bad range" error. 

Launching Star-P® with a MATLAB .m script

A limited form of batch processing can be used in Star-P® that is separate from the realm of 
full workload management systems that are also supported by Star-P®. This process involves 
use of command line options listed above as well as the name of a desired script you wish to 
run within your VHLL environment. If you wish to run a .m script named myscript.m, you 
would redirect the contents of a MATLAB .m file into the starp command like this:

starp -a server -u user -p 4 -t . -s /usr/local/starp-<version> < myscript.m

Cluster Configurations

There are 2 files and several command line arguments that can affect cluster configuration. 

• If no machine_file.user_default exists, the system will create one for the 
current session containing only the name of the current machine. 

• If a machine_file.system default exists, a machine_file.user_default 
does not exist, and no (related) command line args are specified, then the 
machine_file.system_default will be used. 

• If a machine_file.user_default exists, it takes precedence over any 
machine_file.system_default file. 

• If command line args are used, the args must represent a subset of the selected 
machine_file. 
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Chapter 3
Data Parallelism with Star-P® and MATLAB 

This chapter contains information on creating, manipulating, loading, and saving data in 
parallel and includes the following:

• "Star-P® Naming Conventions"

• "Examining Star-P® Data"

• "Special Variables: p and np"

• "Supported Data Types"

• "Creating Distributed Arrays"

• "Types of Distributions"

• "Propagation of Distribution"

• "Explicit Data Movement with ppback and ppfront"

• "Loading And Saving Data on the Parallel Server"

The Star-P® extensions to MATLAB allow you to parallelize computations by declaring data 
as distributed. This places the data in the memory of multiple processors. Once the data is 
distributed, then operations on the distributed data will run implicitly in parallel. Since 
declaring the data as distributed requires very little code in a Star-P® program, performing the 
MATLAB operations in parallel requires very little change from standard, serial MATLAB 
programing.

Another key concept in Star-P® is that array dimensions are declared as distributed, not the 
array proper. Of course, creating an array with array dimensions that are distributed causes 
the array itself to be distributed as well. This allows the distribution of an array to propagate 
through not only computational operators like + or fft, but also data operators like size. 
Propagation of distribution is one of the key concepts that allows large amounts of MATLAB 
code to be reused directly in Star-P® without change.
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Star-P® Naming Conventions

Star-P® commands and data types generally use the following conventions, to distinguish 
them from standard MATLAB commands and data types:

• Most Star-P® commands begin with the letters pp, to indicate parallel. For example, 
the Star-P® ppload command loads a distributed matrix from local files. Exceptions 
to this rule include the split and bcast commands.

• Star-P® data types begin with the letter d, to indicate “distributed”. For example, the 
Star-P® dsparse class implements distributed sparse matrices. 

The following convention for displaying Star-P® related commands and classes is used 
throughout this chapter.

Examining Star-P® Data

This section describes how you can look at your variables, see their sizes and determine 
whether they reside on the client as a regular MATLAB object or on the server as a Star-P® 
object. The MATLAB whos command is often used for this function, but whos is unaware of 
the true sizes of the distributed arrays. Star-P® supports a similar command called ppwhos. 
Here is sample calling sequence and output:

>> n = 1000;                                                      
>> app = ones(n*p);                                                 
>> bpp = ones(n*p,n);                                               
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes        Class                   
  app        1000x1000p      8000000      ddense array            
  bpp        1000px1000      8000000      ddense array            
  n          1x1             8            double array            
Grand total is 2000001 elements using 16000008 bytes              
MATLAB has a total of 1 elements using 8 bytes                    

Star-P® server has a total of 2000000 elements using 16000000 bytes

Command/Variable Font

p & other dlayout variables bold green font
Distributed variables bold blue font

Star-P® functions bold black font
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Note that each dimension of the arrays includes the “p” if it is distributed. Size and Bytes 
reflect the size on the server for distributed objects, and transition naturally to scientific 
notation when their integer representations get too large for the space.

>> n = 2*10^9;                                                           
>> xpp = ones(1,n*p);                                                      
>> ppwhos                                                                
Your variables are:                                                      
  Name       Size               Bytes             Class                  
  n          1x1                8                 double array           
  xpp        1x2000000000p      1.600000e+10      ddense array           
Grand total is 2000000001 elements using 1.600000e+10 bytes              
MATLAB has a total of 1 elements using 8 bytes                           

Star-P® server has a total of 2000000000 elements using 1.600000e+10 bytes

Note that the MATLAB whos command, when displaying distributed objects, only shows the 
amount of memory they consume on the front-end, not including their server memory. This 
does not reflect their true extent. For example, the output from whos for the session above 
looks like the following:

>> n = 1000;                                                
>> app = ones(n*p);                                           
>> bpp = ones(n*p,n);                                         
>> whos                                                     
  Name         Size              Bytes      Class 
  app          1000x1000         1728       ddense              
  bpp          1000x1000         1728       ddense              
  n            1x1               8          double              

The ppwhos command gives the full and correct information.

Reusing Existing Scripts

The following routine is the built-in MATLAB routine to construct a Hilbert matrix: 

>> H = hilb(4096);

Because the operators in the routine (:, ones, subsasgn, transpose, rdivide, +, -) are 
overloaded to work with distributed matrices and arrays, typing the following would create a 
4096 by 4096 Hilbert matrix on the server.

>> Hpp = hilb(4096*p)
Hpp =                                                                           
        ddense object: 4096-by-4096p   

By exploiting MATLAB’s object-oriented features in this way, existing scripts can run in 
parallel under Star-P® with minimal modification.
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Examining/Changing Distributed Matrices

As a general rule, you will probably not want to view an entire distributed array, because the 
arrays that are worth distributing tend to be huge. For example, the text description of 10 
million floating-point numbers is vast. But looking at a portion of an array can be useful. To 
look at any portion of a distributed array bigger than a scalar, it will have to be transferred 
explicitly to the client MATLAB program. But looking at a single element of the array can be 
done simply. Remember from above that result arrays that are 1x1 matrices are created as 
local arrays on the MATLAB client.

>> app = rand(1000*p,1000);
>> size(app)
ans =
     1000p    1000
>> app(423,918)
ans =                         
    0.2972
>> app(2,3), app(2,3) = 5; app(2,3)
ans = 
    0.8410
ans = 
     5                        
>> app(1:5,1:5)
ans =
        ddense object: 5p-by-5

As you can see, examining a single element of the array returns its value. Examining multiple 
elements creates another distributed object, which remains on the server, as in the last 
command above. To see the values of these elements, you will need to use ppfront to 
move them to the front-end. For information on ppfront and ppback see "Explicit Data 
Movement with ppback and ppfront".

>> app = rand(1000*p,1000);                         
>> ppfront(app(1:5,1:5))                            
ans =                                             
    0.9256    0.3075    0.4824    0.7822    0.6045
    0.6478    0.7912    0.8058    0.8359    0.0778
    0.4349    0.7521    0.0216    0.5591    0.2883
    0.9269    0.9317    0.9427    0.1967    0.3970
    0.2723    0.2860    0.3665    0.1203    0.3310

Special Variables: p and np

In Star-P® you use two special variables to control parallel programming. While they are 
technically functions, you can think of them as special variables. The first is p, which is used 
in declarations such as the following to denote that an array should be distributed for parallel 
processing.

>> zpp = ones(100*p);
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The second variable with special behavior is np, denoting the number of processors that 
have been allocated to the user’s job for the current Star-P® session. Because these are not 
unique names, and existing MATLAB programs may use these names, care has been taken 
to allow existing programs to run, as described here. The behavior described here for p and 
np is the same as the behavior for MATLAB built-in variables such as i and eps, which 
represent the imaginary unit and floating-point relative accuracy, respectively. 

The variables p and np exist when Star-P® is initiated, but they are not visible by the whos or 
ppwhos command.

After Star-P® initializes in a new session, the following commands yield no output.

>> whos
>> ppwhos

Even though the variables p and np do not appear in the output of whos or ppwhos, they do 
have values:

>> p
ans =
      1p
>> np
ans = 
      8

The variable np will contain the number of processors in use in the current Star-P® session. 
In this example, the session was using eight processors.

Because these variable names may be used in existing programs, it is possible to replace the 
default Star-P® definitions of p and np with your own definitions, as in the following example:

>> p                                                          
ans =                                                         
     1p                                                       
>> np                                                         
ans =                                                         
     8                                                        
>> n = 100;                                                   
>> app = ones(n*p);                                             
>> bpp = ones(n*p,n);                                           
>> cpp = bpp*bpp;                                                   
>> p = 3.14;                                                  
>> z = p*p;                                                   
>> z                                                          
z =                                                           
    9.8596                                                    
>> p                                                          
p =                                                           
    3.1400                                                    
>> ppwhos                                                     
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Your variables are:                                           
  Name       Size          Bytes      Class                   
  app        100x100p      80000      ddense array            
  ans        1x1           8          double array            
  bpp        100px100      80000      ddense array            
  cpp        100px100      80000      ddense array            
  n          1x1           8          double array            
  p          1x1           8          double array            
  z          1x1           8          double array            
Grand total is 30004 elements using 240032 bytes              
MATLAB has a total of 4 elements using 32 bytes               

Star-P® server has a total of 30000 elements using 240000 bytes
>> clear p                                                    
>> p                                                          
ans =                                                         
     1p                                                       
>> ppwhos                                                     
Your variables are:                                           
  Name       Size          Bytes      Class                   
  app        100x100p      80000      ddense array            
  ans        1x1           258        dlayout array           
  bpp        100px100      80000      ddense array            
  cpp        100px100      80000      ddense array            
  n          1x1           8          double array            
  z          1x1           8          double array            
Grand total is 30003 elements using 240274 bytes              
MATLAB has a total of 3 elements using 274 bytes              

Star-P® server has a total of 30000 elements using 240000 bytes

Note that in the first output from ppwhos, the variable p is displayed, because it has been 
defined by the user, and it works as a normal variable. But once it is cleared, it reverts to the 
default Star-P® definition. If you define p in a function, returning from the function acts like a 
clear and the definition of p will revert in the same way.

The variable name np works in the same way. 

Assignments to p

The variable pp is a synonym for p. If you use a mechanism to control client versus Star-P® 
operation (execution solely on the client versus execution with Star-P®), the assignment of p 
= 1 anywhere in the MATLAB script will alter the p function. In this case, use a construct 
similar to the following:

if StarP 
    p = pp;
else
    p = 1;
end

Anytime you clear the variable p, for example clear p, the symbolic nature of p is restored.
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Supported Data Types

Real and Complex Data

Real and complex numbers in Star-P® are supported as in MATLAB. Matrices of double 
precision real and complex data can be directly created and manipulated by use of the 
complex, real, imag, conj, and isreal operators and the special variables i and j 
(equal to the square root of -1, or the imaginary unit), and they can be the output of certain 
operators.

Note: Complex integer types are not supported within the Star-P® Task Parallel Engine 
(TPE). However, it does support floating point complex types such as double.

>> n  = 1000;                                                     
>> app  = rand(n*p,n)                                               
app =                                                               
        ddense object: 1000p-by-1000                              
>> bpp  = rand(n*p,n)                                               
bpp =                                                               
        ddense object: 1000p-by-1000                              
>> cpp  = app + i*bpp                                                   
cpp =                                                               
        ddense object: 1000p-by-1000                              
>> ccpp = conj(cpp)                                                   
ccpp =                                                              
        ddense object: 1000p-by-1000                              
>> dpp  = real(cpp)                                                   
dpp =                                                               
        ddense object: 1000p-by-1000                              
>> epp  = imag(cpp)                                                   
epp =                                                               
        ddense object: 1000p-by-1000                              
>> fpp  = complex(app)                                                
fpp =                                                               
        ddense object: 1000p-by-1000                              
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes         Class                  
  app        1000px1000      8000000       ddense array           
  bpp        1000px1000      8000000       ddense array           
  cpp        1000px1000      16000000      ddense array (complex) 
  ccpp       1000px1000      16000000      ddense array (complex) 
  dpp        1000px1000      8000000       ddense array           
  epp        1000px1000      8000000       ddense array           
  fpp        1000px1000      16000000      ddense array (complex) 
  n          1x1             8             double array           
Grand total is 7000001 elements using 80000008 bytes              
MATLAB has a total of 1 elements using 8 bytes                    

Star-P® server has a total of 7000000 elements using 80000000 bytes
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Besides these direct means of constructing complex numbers, they are often the result of 
specific operators, perhaps the most common example being FFTs.

>> app = rand(1000,1000*p)                                          
app =                                                               
        ddense object: 1000-by-1000p                              
>> bpp = fft2(app)                                                    
bpp =                                                               
        ddense object: 1000-by-1000p                              
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes         Class                  
  app        1000x1000p      8000000       ddense array           
  bpp        1000x1000p      16000000      ddense array (complex) 
Grand total is 2000000 elements using 24000000 bytes              
MATLAB has a total of 0 elements using 0 bytes                    

Star-P® server has a total of 2000000 elements using 24000000 bytes

Creating Distributed Arrays

Using Star-P®, data can be created as distributed in several ways:

• The data can be initially allocated as distributed using the *p syntax in conjunction 
with a variety of constructor routines such as zeros, ones, rand, randn, spones, 
sprand, sprandn, as described in "Distributed Data Creation Routines". 

• An array bounds variable can be created using the *p syntax, which is then used to 
create distributed arrays.

• Most commonly, a distributed object can be created by propagation when an 
operation on a distributed object creates a new distributed object, as described in 
"Propagating the Distributed Attribute".

• The data can be loaded from disk to a distributed object with the ppload routine, 
which is similar to the MATLAB load routine.

• The data can be explicitly distributed with the ppback server command.

• A new distributed array can be created by indexing a section of a distributed array, 
as described in "Indexing into Distributed Matrices or Arrays". 

The *p Syntax

The symbol p means “distributed” and can add that attribute to a variety of other operators 
and variables by the multiplication operator *. Technically, p is a function, but it may be 
simpler to think of it as a special variable. Any scalar that is multiplied by p will be of class 
dlayout. For more information about p, see "Special Variables: p and np".

>> p                                                    
ans =                                                   
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     1p                                                 
>> whos                                                 
  Name      Size            Bytes  Class      Attributes
  ans       1x1               362  dlayout              

Note: While it might seem natural to add a *p to the bounds of a for loop to have it run in 
parallel, unfortunately that doesn't work. The simplicity of this type of approach has 
not been lost on the designers of Star-P®, and a functionality of this type or similar 
may appear in future releases.

Distributed Data Creation Routines

Matrices can be declared as distributed in Star-P® by appending *p to one or more of the 
dimensions of the matrix. For example, any of the following will create App as a distributed 
dense matrices:

>> App = rand(100*p,100  );
>> App = rand(100  ,100*p);
>> App = rand(100*p);      
>> App = rand(100*p,100*p);
>> App = 1:100*p;

The first and second examples create matrices that are distributed in the first and second 
dimensions, respectively. The last two examples create a matrix that is distributed in the 
second dimension. For more detail, see "Types of Distributions".

Similarly, distributed sparse matrices can be created by the following declaration:

App = sprandn(100*p,100,0.03);

You can declare multidimensional arrays to be distributed by appending *p to any one 
dimension of the matrix. Star-P® supports the same set of data creation operators for 
multidimensional arrays as MATLAB does. 

The operators ones, zeros, rand, sprand, eye, and speye all have the same behavior as 
randn and sprandn, respectively, for dense and sparse operators. The horzcat and 
vertcat operators work in the obvious way; concatenation of distributed objects yields 
distributed objects.

The meshgrid operator can create distributed data in a similar way, although this example 
may not be the way you would use it in practice:

>> [xpp ypp] = meshgrid(-2:.2:2*p,-2:.2:2*p);
>> size(xpp), size(ypp)                      
ans =                                    
     21     21p                          
ans =                                    
     21     21p                          
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Also, the diag operator extends a distributed object in the obvious way.

>> qpp = rand(100*p,1);
>> rpp = diag(qpp,0);    
>> size(qpp), size(rpp)  
ans =                
     100p      1     
ans =                
     100p    100     

The reshape command can also create distributed arrays, even from local arrays.

>> a = rand(100,100);                                        
>> app = reshape(a,100,100*p)                                 
app =                                                         
        ddense object: 100-by-100p                           
>> ppwhos                                                    
Your variables are:                                          
  Name       Size          Bytes      Class                  
  a          100x100       80000      double array           
  app        100x100p      80000      ddense array           
Grand total is 20000 elements using 160000 bytes             
MATLAB has a total of 10000 elements using 80000 bytes       

Star-P® server has a total of 10000 elements using 80000 bytes

The details of these different distributions are described in "Types of Distributions".

Note: The data sizes shown in the examples illustrate the functionality of Star-P® but do not 
necessarily reflect the sizes of problems for which Star-P® will provide significant 
benefit.

Distributed Array Bounds

Some programs or functions take as input not an array, but the bounds of arrays that are 
created internally. The *p syntax can be used in this situation as well, as shown in the 
following:.

>> n = 1000*p;                                          
>> whos                                                 
      Name      Size      Bytes  Class      Attributes
      n         1x1         362  dlayout              
>> App = rand(n)                                          
App =                                                     
        ddense object: 1000-by-1000p                    

Indexing into Distributed Matrices or Arrays

Indexing allows creation of new matrices or arrays from subsections of existing matrices or 
arrays. Indexing on distributed matrices or arrays always creates a distributed object, unless 
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the result is a scalar, in which case it is created as a local object. Consider the following 
example:

>> app = rand(1000*p);
>> bpp = rand(1000*p);

Operations that result in distributed matrices:

% Indexing (sub)sections of the elements of a distributed
% array result in a distributed object
>> cpp = app(1:end,1:end);
>> dpp = app(18:23,47:813);
>> fpp = app(:);    %linearize 2D array into 1D vector doing assignment
                    %via the linearization approach works naturally
>> bpp(:) = 0;                                                   

Operations that result in local objects, data transferred to front-end:

>> e = app(47,418); % scalar goes to front-end                    
>> nnz(app)         % scalar answer 'ans' goes to front-end       
ans =                                                             
     1000000                                                      
>> nnz(bpp)         % scalar answer 'ans' goes to front-end       
ans =                                                             
     0                                                            
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes        Class                   
  app        1000x1000p      8000000      ddense array            
  ans        1x1             8            double array            
  bpp        1000x1000p      8000000      ddense array            
  cpp        1000x1000p      8000000      ddense array            
  dpp        6x767p          36816        ddense array            
  e          1x1             8            double array            
  fpp        1000000px1      8000000      ddense array            
Grand total is 4004604 elements using 32036832 bytes              
MATLAB has a total of 2 elements using 16 bytes                   

Star-P® server has a total of 4004602 elements using 32036816 bytes

In order to propagate the distribution of data as broadly as possible, Star-P® interprets 
indexing operations on distributed objects as creating new distributed objects, hence the 
distributed nature of bpp and dpp in the example. The one exception is where the resulting 
object is a scalar (1x1 matrix), which always resides on the front-end.

Note that creating a new matrix or array by indexing, as in the creation of dpp above, may 
involve interprocessor communication on the server, as the new matrix or array will need to 
be evenly distributed across the processors (memories) in use, and the original position of 
the data may not be evenly distributed.
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It may seem logical that you could create a distributed object by adding the *p to the left-hand 
side of an equation, just as you can to the right-hand side. But this approach doesn't work, 
either in MATLAB in general or in Star-P® specifically for distributed arrays.

>> a*4 = rand(100,100);                                                          
??? a*4 = rand(100,100);                                                         
Error: The expression to the left of the equals sign is not a valid target for 
an assignment.
>> a*p = rand(100,100);                                                          
??? a*p = rand(100,100);                                                         
Error: The expression to the left of the equals sign is not a valid target for 
an assignment.
>> a(:,:) = rand(100,100);                                                       
>> a(:,:*p) = rand(100,100);                                                     
??? a(:,:*p) = rand(100,100);                                                    
Error: Unexpected MATLAB operator.                                               

Note: There is an incompatibility between MATLAB and Star-P® in this area. In MATLAB, 
when you type the command app or bpp, as soon as that assignment is complete, you 
can modify either app or bpp and know that they are distinct entities, even though the 
data may not be copied until later. For technical reasons Star-P® can get fooled by this 
deferment. Thus if you modify either app or bpp, the contents of both app and bpp get 
modified. Because of the semantics of the MATLAB language, this is only relevant for 
assignments of portions of app or bpp; i.e., app(18,:) = ones(1,100*p) or 
app(1234) = 3.14159. There are several ways to avoid the deferment and force 
the data to be copied immediately to avoid this problem. One example would be (for 
a 2D matrix) to do the copy with app = bpp(:,:). Another example that works for 
all non-logical arrays is app = +bpp. 

Note: Related to the previous note, if a shallow copy of a variable is created using the 
command app = bpp, then the deletion of either app or bpp using clear or ppclear 
on app or  bpp will delete the data for both app and bpp but will not delete the symbols 
for both variables. To avoid the this scenario, use an assignment statement of the form 
app = bpp(:,:) or app = +bpp.
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Distributed Dense Matrices and Arrays

Star-P® uses the MATLAB terminology of two-dimensional matrices and multidimensional 
arrays of numbers. Like MATLAB, a full set of operations is defined for matrices, but a smaller 
set for arrays. Arrays are often used as repositories for multiple matrices and operated on in 
2D slices, so the set of supported operators reflects this.

Star-P® supports row and column distribution of dense matrices. These distributions assign a 
block of contiguous rows/columns of a matrix to successive processes. 
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A two-dimensional distributed dense matrix can be created with any of the following 
commands:

>> bpp = rand(400  ,400*p);
>> app = rand(400*p,400  );

 The *p designates which of the dimensions are to be distributed across multiple processors.

Row distribution

In the example above, app is created with groups of rows distributed across the memories of 
the processors in the parallel server. Thus, with 400 rows on 8 processors, the first 400/8 == 
50 rows would be on the first processor, the next 50 on the second processor, and so forth, in 
a style known as row-distributed. Figure 3-1 illustrates the layout of a row-distributed array.

Figure 3-1  Row Distribution

Column distribution

Column-distribution works just the same as row distribution, except column data is split over 
available processors; bpp is created that way above. Figure 3-2: illustrates the layout of a 
column distributed array. When a *p is placed in more than one dimension, the matrix or 
multi-dimensional array will be distributed in the rightmost dimension containing a *p. For 
example, if there was a *p in both dimensions of the constructor for a two dimensional matrix, 
it would result in a column distribution.
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Figure 3-2  Column Distribution

Distributed Dense Multidimensional Arrays

Distributed multidimensional arrays are also supported in Star-P®. They are distributed on 
only a single dimension, like row- and column-distributed 1D or 2D matrices. Hence if you 
create a distributed object with the following command, then app will be distributed on the 
third dimension:

>> n = 10;             
>> app = rand(n,n,n*p,n);

If you should happen to request distribution on more than one dimension, the resulting array 
will be distributed on the rightmost non-singleton requested dimension. A singleton is defined 
as a matrix dimension with a size equal to 1.

>> app = zeros(10*p,10,10*p,10*p,10*p)             
app =                                              
        ddense object:10-by-10-by-10-by-10-by-10p

Multidimensional distributed dense arrays support a subset of operators on 2D arrays. See 
the full list in "Star-P® Functions". 

Distributed Sparse Matrices

Distributed sparse matrices in Star-P® use the compressed sparse row format. Distributed 
sparse matrices are represented as dsparse objects. This format represents the nonzeros in 
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each row by the index (in the row) of the nonzero and the value of the nonzero, as well as 
one per-row entry in the matrix data structure. This format consumes storage proportional to 
the number of nonzeros and the number of rows in the matrix. Sparse matrices in Star-P® 
typically consume 12 bytes per double-precision element, compared to 8 bytes for a dense 
matrix. The matrix is distributed by rows, with the same number of rows per processor 
(modulo an incomplete number on the last processor(s)). Note that, as a consequence, it is 
possible to create sparse matrices that do not take advantage of the parallel nature of the 
server. For instance, if a series of operations creates a distributed sparse row vector, all of 
that vector will reside on one processor and would typically be operated on by just that one 
processor.

How Star-P® Represents Sparse Matrices

While one might imagine the data stored in three columns headed by i, j, Aij, in fact the data is 
stored as described by this picture:

Figure 3-3  Star-P® Sparse Data Structure

Notice that if you subtract the row index vector from itself shifted one position to the left, you 
get the number of elements in a row. This makes it clear what to do if element (2,2) with the 
value of 59 gets deleted in Figure 3-3:, resulting in no elements left in the second row. The 
indices would then point to [1 3 3 5]. In other words, noticing that the number of non-zeros per 
row is [2 0 2] in this case, you could perform a cumsum on [1 2 0 2] and obtain [1 3 3 5].
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Figure 3-4  Star-P® Distributed Sparse Data Structures

Figure 3-4 shows what happens when the sparse data structure from Figure 3-3: is 
distributed across multiple processors by Star-P®. The number of rows is divided among the 
participating processors, and each processor gets the information about its local rows. Thus 
operations that occur on rows can happen locally on a processor; operations that occur on 
columns require communication among the processors.

Distributed Cell Objects (dcell)

The dcell is analogous to MATLAB cells. The dcell type is different from the other 
distributed matrix or array types, as it may not have the same number of data elements per 
dcell iteration and hence doesn't have the same degree of regularity as the other 
distributions. This enables dcells to be used as return arguments for ppevalsplit(). For 
more information on ppevalsplit, see "ppevalsplit" in "Star-P® Functions".

Combining Data Distribution Mechanisms

The data distribution mechanisms can be combined in a program. For instance, the array App 
can be loaded from a file and then its dimensions used to create internal work arrays based 
on the size of the passed array.

>> ppload imagedata App                                             
>> [rows cols] = size(App)                                          
rows =                                                            
        1000                                                      
cols =                                                            
     1000p                                                        
>> Bpp = zeros(rows,cols);                                          
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes        Class                   
  App        1000x1000p      8000000      ddense array            
  Bpp        1000x1000p      8000000      ddense array            
  cols       1x1             258          dlayout array           
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  rows       1x1             8            double array            
Grand total is 2000002 elements using 16000266 bytes              
MATLAB has a total of 2 elements using 266 bytes                  

Star-P® server has a total of 2000000 elements using 16000000 bytes

Similarly, input data created by ones or zeros or sprand can be used as input to other 
functions, scripts, or toolboxes that are not aware of the distributed nature of their input, but 
will work anyway. For example, the function foo is defined as follows:

function c = foo(a)      % now executing in the function foo
[rows cols] = size(a);
b = rand(rows,cols);     % creat a symmetric + diagonal matrix
c = b + b' + eye(rows);  % based on the size of the input
% ......

In this example, the following code will then work because all the operators in foo are 
defined for distributed objects as well as regular MATLAB objects:

>> App = rand(1000*p);                                              
>> Cpp = foo(App)                                                    
Cpp =                                                               
        ddense object: 1000-by-1000p                              
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes        Class                   
  App        1000x1000p      8000000      ddense array            
  Cpp        1000x1000p      8000000      ddense array            
Grand total is 2000000 elements using 16000000 bytes              
MATLAB has a total of 0 elements using 0 bytes                    

Star-P® server has a total of 2000000 elements using 16000000 bytes

These mechanisms are designed to work this way so that a few changes can be made when 
data is input to the program or initially created, and then the rest of the code can be 
untouched, giving high re-use and easy portability from standard MATLAB to Star-P® 
execution.

Mixing Local and Distributed Data

The examples up until now have covered operations that included exclusively local or 
distributed data. Of course, it is possible to have operations that include both. In this case, 
Star-P® typically moves the local object from the client to the server, following the philosophy 
that operations on distributed objects should create distributed objects. In the example here, 
you can see this by the pptoc output showing 80KB received by the server.

>> A = rand(100);                                                     
>> Bpp = rand(100*p);                                                   
>> pptic; Cpp = A + Bpp; pptoc;                                           
Client/server communication report:                                   
  Sent by server: 2 messages, 1.560e+02 bytes                         
  Received by server: 2 messages, 8.017e+04 bytes                     
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  Total communication time: 6.706e-03 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 7.675e-03s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 1.648e-01 seconds                                         

And of course, note that all scalars are local, so whenever a scalar is involved in a calculation 
with a distributed object, it will be sent to the server.

>> Bpp = rand(100*p)
Bpp = 
        ddense object: 100-by-100p
>> App = Bpp * pi
App = 
        ddense object: 100-by-100p

The mixing of local and distributed data arrays is not as common as you might think. 
Remember that Star-P® is intended for solving large problems, so distributed arrays will 
typically be bigger than the memory of the client system. So, a typically sized distributed 
array would not have an equal size client array to add to it.

There are cases where mixed calculations can be useful. For example, if a vector and a 
matrix are being multiplied together, the vector may be naturally stored on the client, but a 
calculation involving a distributed array will move it to the server.

>> qpp = rand(10000*p,16);
>> r = rand(16,1);
>> spp = qpp*r
spp = 
         ddense object: 10000p-by-1

Distributed Classes used by Star-P®

You may have been wondering about these class types you have been seeing in the output of 
ppwhos, namely dlayout, ddense, dsparse, and densend. Classes are the way that 
MATLAB supports extensions of its baseline functionality, similar to the way C++ and other 
languages support classes. To create a new class, it must have a name and a set of functions 
that implement it.

The ddense class may be the simplest Star-P® class to understand. It is a dense matrix, just 
like a MATLAB dense matrix, except it is distributed across the processors (memories) of the 
HPC server system. When you create a distributed dense object, you will see its type listed 
by ppwhos, as in the following example:

>> n = 1000;                                                      
>> App = ones(n*p);                                                 
>> Bpp = ones(n*p,n);                                               
>> ppwhos                                                         
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Your variables are:                                               
  Name       Size            Bytes        Class                   
  App        1000x1000p      8000000      ddense array            
  Bpp        1000px1000      8000000      ddense array            
  n          1x1             8            double array            
Grand total is 2000001 elements using 16000008 bytes              
MATLAB has a total of 1 elements using 8 bytes                    

Star-P® server has a total of 2000000 elements using 16000000 bytes

Creating a new class is simple. Having it do something useful requires operators that know 
how to operate on the class. MATLAB allows class-specific operators to be in a directory 
named @ddense, in the case of class ddense. For instance, if you wanted to know where the 
routine is that implements the gradient operator, you would use the MATLAB which 
command, as in the following example:

>> which gradient                                          
/usr/local/matlab/toolbox/matlab/datafun/gradient.m        
>> which @ddense/gradient                                  
<starp_root>/matlab/@ddense/gradient.p  % ddense method    
>> which @ddensend/gradient                                
<starp_root>/matlab/@ddensend/gradient.p  % ddensend method
>> which @dsparse/gradient                                 
<starp_root>/matlab/@dsparse/gradient.p  % dsparse method  

In the above example, <starp_root> is the location where the Star-P® client installation took 
place.

The which sum command tells you where the routine is that implements the sum operator for 
a generic MATLAB object. The which @double/sum command tells you where the  
MATLAB code is that implements the sum operator for the MATLAB double type. The which 
@ddense/sum command tells you where the Star-P® code is that implements it for the 
Star-P® ddense class. The MATLAB class support is essential to the creation of Star-P®’s 
added classes.

Similarly to the ddense class, the dsparse class implements distributed sparse matrices. 
Since the layout and format of data is different between dense and sparse matrices, typically 
each will have its own code implementing primitive operators. The same holds for the 
ddensend class implementing multidimensional arrays.

 However, as shown in the hilb example below, there are non-primitive MATLAB routines 
which use the underlying primitives that are implemented for ddense and dsparse. These 
routines will work in the obvious way, and so no further class-specific version of the routine is 
necessary.

>> which hilb                                
/usr/local/matlab/toolbox/matlab/elmat/hilb.m
>> which @ddense/hilb                        
'@ddense/hilb' not found.                    
>> which @ddensend/hilb                      
'@ddensend/hilb' not found.                  
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The dlayout class is not as simple as the ddense and dsparse classes, because the only 
function of the dlayout class is to declare dimensions of objects to be distributed. Thus, you 
will see that operators are defined for dlayout only where it involves array construction (e.g. 
ones, rand, speye) and simple operators often used in calculations on array bounds (for 
example, max, floor, log2, abs). The complete set of functions supported by dlayout are 
found in "Supported MATLAB® Functions". The only way to create an object of class 
dlayout is to append a *p to an array bound at some point, or to create a distributed object 
otherwise, as via ppload.

To create dlayout objects without the *p construct we can import data with ppload and 
extract the dlayout objects from size of the imported variable.

>> n = 1000;                                                      
>> app = rand(n*p)                                                  
app =                                                               
        ddense object: 1000-by-1000p                              
>> [rows, cols] = size(app)                                         
rows =                                                            
        1000                                                      
cols =                                                            
     1000p                                                        
>> ppload imagedata App                                             
>> Bpp = inv(App)                                                     
Bpp =                                                               
        ddense object: 1000-by-1000p                              
>> [Brows, Bcols] = size(Bpp)                                       
Brows =                                                           
        1000                                                      
Bcols =                                                           
     1000p                                                        
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes        Class                   
  App        1000x1000p      8000000      ddense array            
  Bpp        1000x1000p      8000000      ddense array            
  Bcols      1x1             258          dlayout array           
  Brows      1x1             8            double array            
  app        1000x1000p      8000000      ddense array            
  cols       1x1             258          dlayout array           
  n          1x1             8            double array            
  rows       1x1             8            double array            
Grand total is 3000005 elements using 24000540 bytes              
MATLAB has a total of 5 elements using 540 bytes                  

Star-P® server has a total of 3000000 elements using 24000000 bytes

As a result, dlayout is something you may see often in ppwhos displays. 
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Propagating the Distributed Attribute

Since the distributed attribute of matrices and arrays is what triggers parallel execution, the 
semantics of Star-P® have been carefully designed to propagate distribution as frequently as 
possible. In general, operators which create data objects as large as their input (*, +, \ (linear 
solve), fft, svd, etc.) will create distributed objects if their input is distributed. Operators 
which reduce the dimensionality of their input, such as max or sum, will create distributed 
objects if the resulting object is larger than a scalar (1x1 matrix). Routines that return a fixed 
number of values, independent of the size of the input (like eigs, svds, and histc) will 
return local MATLAB (non-distributed) objects even if the input is distributed. Operators 
whose returns are bigger than the size of the input (e.g. kron) will return distributed objects if 
any of their inputs are distributed. Note that indexing, whether for a reference or an 
assignment, is just another operator, and follows the same rules. 

The following example creates a distributed object through the propagation of a distributed 
object. In this case, since App is created as a distributed object through the *p syntax, Bpp will 
be created as distributed.

>> App = ones(100*p);                                           
>> Bpp = 2 * App;                                                 
>> ppwhos                                                     
Your variables are:                                           
  Name       Size          Bytes      Class                   
  App        100x100p      80000      ddense array            
  Bpp        100x100p      80000      ddense array            
Grand total is 20000 elements using 160000 bytes              
MATLAB has a total of 0 elements using 0 bytes                

Star-P® server has a total of 20000 elements using 160000 bytes

Note that in this example, both ones and “*” are overloaded operations and will perform the 
same function whether the objects they operate on are local or distributed.

The following computes the eigenvalues of Xpp, and stores the result in a matrix Epp, which 
resides on the server.

>> Xpp = rand(1000*p);
>> Epp = eig(Xpp);

The result is not returned to the client, unless explicitly requested, in order to reduce data 
traffic.

Operators which reduce the dimensionality of their input naturally transition between 
distributed and local arrays, in many cases allowing an existing MATLAB script to be reused 
with Star-P® having little or no change. Putting together all of these concepts in a single 
example, you can see how distribution propagates depending on the size of the output of an 
operator. (Note that the example omits trailing semicolons for operators that create 
distributed objects so their size will be apparent.)

Assume that the script propagate.m consists of the following commands:
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>> type propagate              
[rows, cols] = size(a)         
b = rand(rows,cols)            
c = b+a                        
d = b*a                        
e = b.*a                       
f = max(e)                     
ff = max(max(e))               
gg = sum(sum(e))               
size(ff), size(gg)             
h = fft(e)                     
i = ifft(h)                    
[i j v] = find(b > 0.95)       
q = sparse(i, j, v, rows, cols)
r = q' + speye(rows);          
s = svd(d);                    
t = svds(d,4);                 
ee = eig(d);    

In that case, distribution will propagate through its operations as follows (note that we are 
omitting the use of a suffix pp variable notation here, since the script is being reused without 
modification):

>> a = ones(1000*p,1000)                                          
a =                                                               
        ddense object: 1000p-by-1000                              
% now executing the commands in script 'propagate'                             
>> [rows, cols] = size(a)                                         
rows =                                                            
     1000p                                                        
cols =                                                            
        1000                                                      
>> b = rand(rows,cols)                                            
b =                                                               
        ddense object: 1000p-by-1000                              
>> c = b+a                                                        
c =                                                               
        ddense object: 1000p-by-1000                              
>> d = b*a                                                        
d =                                                               
        ddense object: 1000p-by-1000                              
>> e = b.*a                                                       
e =                                                               
        ddense object: 1000p-by-1000                              
>> f = max(e)                                                     
f =                                                               
        ddense object: 1-by-1000p                                 
>> ff = max(max(e))                                               
ff =                                                              
    1.0000                                                        
>> gg = sum(sum(e))                                               
gg =                                                              
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   4.9991e+05                                                     
>> size(ff), size(gg)                                             
ans =                                                             
     1     1                                                      
ans =                                                             
     1     1                                                      
>> h = fft(e)                                                     
h =                                                               
        ddense object: 1000p-by-1000                              
>> i = ifft(h)                                                    
i =                                                               
        ddense object: 1000p-by-1000                              
>> [i j k] = find(b > 0.95)                                       
i =                                                               
        ddense object: 49977p-by-1                                
j =                                                               
        ddense object: 49977p-by-1                                
k =                                                               
        ddense object: 49977p-by-1                                
>> q = sparse(i, j, k, rows, cols)                                
q =                                                               
        dsparse object: 1000p-by-1000                             
>> r = q' + speye(rows);                                          
>> s = svd(d);                                                    
>> t = svds(d,4);                                                 
>> ee = eig(d);                                                   
% end of 'propagate' script, back to main session                 
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes        Class                   
  a          1000px1000      8000000      ddense array            
  ans        1x2             16           double array            
  b          1000px1000      8000000      ddense array            
  c          1000px1000      8000000      ddense array            
  cols       1x1             8            double array            
  d          1000px1000      8000000      ddense array            
  e          1000px1000      8000000      ddense array            
  ee         1000px1         16000        ddense array  (complex) 
  f          1x1000p         8000         ddense array            
  ff         1x1             8            double array            
  gg         1x1             8            double array            
  i          49977px1        399816       ddense array            
  j          49977px1        399816       ddense array  
  k          49977px1        399816       ddense array          
  q          1000px1000      807696       dsparse array (sparse)  
  r          1000px1000      822688       dsparse array (sparse)  
  rows       1x1             258          dlayout array           
  s          1000px1         8000         ddense array            
  t          4x1             32           double array           
            
Grand total is 5253832 elements using 42862162 bytes              
MATLAB has a total of 10 elements using 330 bytes                 
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Star-P® server has a total of 5253822 elements using 42861832 bytes

As long as the size of resulting arrays are dependent on the size of an input array and hence 
will likely be used in further parallel computations, the output arrays are created as distributed 
objects. When the output is small and likely to be used in local operations in the MATLAB 
front-end, it is created as a local object. For this example, with two exceptions, all of the 
outputs have been created as distributed objects. The exceptions are rows, which is a scalar 
of class dlayout, and t, whose size is based on the size of a value passed to svds. Even in 
cases where dimensionality is reduced, as with find, when the resulting object is large, it is 
created as distributed. 

Propagation of Distribution 

A natural question often asked is, “What is the distribution of the output of a given function 
expressed in terms of the inputs?” In Star-P®, there is a general principle on distribution that 
has been carefully implemented in the case of indexing and for a large class of functions. 
Perhaps like irregular verbs of a natural language, there are also a number of special cases, 
that do not follow these rules, some of which we list here. 

In Star-P®, the output of an operation does not depend on the distribution of its inputs. The 
rules specifying the exact distribution of the output may vary in future releases of Star-P®.

Note: Performance and floating point accuracy may be affected, see "Accuracy of Star-P® 
Routines" for more information.

Let’s first recall the distributions available for data in Star-P®:

The distributions of the output of operations follow the “calculus of distribution”. To calculate 
the expected distribution of the output of a given function, express the size of the output in 
terms of the size of the inputs. Note that matrices and multidimensional arrays are never 
distributed along singleton dimensions (dimensions with a size of one), unless explicitly 
created that way. 

Functions of One Argument

In the simplest case, for functions of one argument where the size of the output is the size of 
the input, the output distribution matches that of the input.

Type Distribution

ddense row, column

ddensend linear distribution along any dimension

dsparse row distribution only
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Examples for Functions with One Argument

Operations with one input:

The cosine function operates on each element, and the output retains the same distribution 
as the input:

>> App = rand(1000*p, 4)           
App =                              
        ddense object: 1000p-by-4
>> Bpp = cos(App)                    
Bpp =                              
        ddense object: 1000p-by-4

A conjugate transpose exchanges the dimension sizes of its input, so it also exchanges the 
dimensions' distribution attributes:

>> App = rand(1000*p, 4)           
App =                              
        ddense object: 1000p-by-4
>> Bpp = App'                        
Bpp =                              
        ddense object: 4-by-1000p

Other example single argument functions:

App.^2, lu(App), fft(App), fft2(App)  (ddense and ddensend where applicable)

Exceptions: 

Certain Linear Algebra functions such as qr, svd, eig and schur benefit from a different 
approach and do not follow this rule. See "Single ddense arguments" below.

Functions of Multiple Arguments 

For functions with multiple input arguments, we again express the size of the output in terms 
of the size of the inputs. When the calculation provides an ambiguous result, the output will 
be distributed in the rightmost dimension that has a size greater than one.

For operations in which the output size is the same as both inputs, such as element-wise 
operations (App+Bpp, App.*Bpp, App./Bpp, etc), we consider the distribution of both inputs. 
If both inputs are row distributed, then the output will be row distributed. If the combination of 
inputs has more than one distributed dimension, then the default of distributing on the 
rightmost dimension applies.
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For example, with matrix multiplication,

Cpp = App * Bpp
size(Cpp) == [size(App,1) size(Bpp,2)] : rows_of_App -by- cols_of_Bpp

For Cpp=App*Bpp, if App and Bpp are both row distributed, the output will have its first 
dimension distributed as a result of the fact that App has its first dimension distributed. Its 
second dimension will not be distributed since Bpp's second dimension is not distributed. 
Therefore Cpp will be row distributed as well.

For Cpp=App*Bpp, if App and Bpp are both column distributed, similar logic forces the output 
to be column distributed.

For Cpp=App*Bpp, if App is row distributed and Bpp is column distributed, the calculus of 
distribution indicates that both dimensions of the output should be distributed. Since this is 
not permissible, the rightmost dimension is distributed, resulting in a column distribution.

For Cpp=App*Bpp, If App is column distributed and Bpp is row distributed, the calculus of 
distribution indicates that neither dimension of the output should be distributed. Once again, 
we fall back on the default of distributing the rightmost (column) dimension.

Examples for Functions with Multiple Arguments

As a less trivial example, consider Cpp = kron(App,Bpp). The size of the dimensions of 
Cpp are calculated through the following formula:

size(Cpp) = size(App) * size(Bpp)

The resulting distribution would be ambiguous, so it defaults to the standard of distributing the 
rightmost dimension:

>> App = rand(1000*p, 4);             
>> Bpp = rand(10, 100*p);             
>> Cpp = kron(App,Bpp)                    

Table 3-1Rules for Propagation of Distribution

operations Distribution 
of App

Distribution 
of Bpp

Output 
Distribution

.^, lu, fft, fft2 row or column N/A matches input

+, .*, ./ row row row

column column column

row column column

column row column
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Cpp =                                 
        ddense object: 10000-by-400p

As another example, consider transpose:

Cpp = App.'
size(Cpp) = [size(App,2) size(App,1)]

For transpose, if App is row distributed, the output will be column distributed. If App is column 
distributed, the output will be row distributed.

Exceptions for Multiple Arguments

The following operations benefit from special-case rules and must be accounted for one by 
one. The following list is only the non-trivial cases.

Table 3-2 Single ddense arguments

1 output 2 outputs 3 outputs

qr(ddense) or 
qr(ddense,0)

matches 
input

matches 
input

column

svd(ddense) or 
svd(ddense,0) or  
svd(ddense,’econ’)

row matches 
input

matches 
input

eig(ddense) 
(no-sym)

row matches 
input (not 
officially 
supported)

eig(ddense) (sym) row matches 
input

Table 3-3 Distribution output of kron

Operation
Distribution 
of App

Distribution 
of Bpp

Output 
Distribution

kron(App,Bpp) row row row

kron(App,Bpp) row column row

kron(App,Bpp) column column column

kron(App,Bpp) column row column
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Indexing Operations

Indexing operations follow the same style of rules as other operations. Since the output size 
depends on the size of the indices (as opposed to the size of the array being indexed), the 
output distribution will depend on the distribution of the arguments being used to index into 
the array. If all objects being used to index into the array are front-end objects, then the result 
will default to distribution along the rightmost dimension.

Some indexing examples:

For [r c] = size(Bpp); Bpp = reshape(App,r,c);, so we have:

>> App = rand(9, 4*p);             
>> Bpp = reshape(App,  6, 6*p)     
Bpp =                            
        ddense object: 6-by-6p 
>> Cpp = reshape(Bpp, 36,   1)     
Cpp =                            
        ddense object: 36p-by-1

Indexing is a particularly tricky example, because subsref has many different forms.  
Bpp = App(:,:) has the same distribution as App, because size(Bpp) == size(App). 
Bpp = App(:) vectorizes (linearizes) the elements of App, so the output will be row or column 
distributed accordingly.

Other linear indexing forms inherit the output distribution from the indexing array:

>> App = rand(10*p,10)            
App =                             
        ddense object: 10p-by-10
>> Ipp = ppback(magic(10))        
Ipp =                             
        ddense object: 10-by-10p
>> Bpp = App(Ipp)                     
Bpp =                             
        ddense object: 10-by-10p

But, consider Bpp = App(Rpp,C) with the following:

>> App = rand(100*p,100);           
>> Rpp = randperm(100*p)            
Rpp =                               
        ddense object: 1-by-100p  
>> C = randperm(100);             
>> Bpp = App(Rpp,C)                     
Bpp =                               
        ddense object: 100p-by-100
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Here, size(Bpp) is defined as [prod([1 100p]) prod([1 100])] [100p 100] 
which simplifies to [prod([10p 10p]) prod([10 10])] and then [100p 100]. So the 
distribution of 

• Bpp's row dimension is inherited from both of Rpp's dimensions, and 

• Bpp's column dimension is inherited from C.

As a final example, consider logical indexing:

>> App = rand(100*p,100);           
>> Ipp = App > 0.5                    
Ipp =                               
        ddense object: 100p-by-100
>> Bpp = App(Ipp)                       
Bpp =                               
        ddense object: 5042p-by-1 

This might be unexpected, but is so because App(Ipp) is essentially the same as 
App(find(Ipp)), and find(Ipp) returns a row-distributed column vector.

Summary for Propagation of Distribution

To summarize:

• Output distributions follow the “calculus of distribution” in which the rules for 
determining the size of the output define the rules for the distribution of the output, 
though a selection of Linear Algebra functions do not follow these rules. 

• Typically, functions with one input and one output will have outputs that match the 
distribution of the input.

• When the output distribution will be ambiguous or undefined by the standard rules, 
the output will be distributed along its rightmost dimension.

• Outputs are never distributed along singleton dimensions (dimensions with a size of 
one). 

Explicit Data Movement with ppback and ppfront

In some instances a user wants to move data explicitly between the client and the server. The 
ppback command and its inverse, ppfront, do these functions.

>> n = 1000;                                                     
>> mA = rand(n);                                                 
>> mB = rand(n);                                                 
>> ppwhos                                                        
Your variables are:                                              
  Name       Size           Bytes        Class                   
  mA         1000x1000      8000000      double array            
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 49



Explicit Data Movement with ppback and ppfront
  mB         1000x1000      8000000      double array            
  n          1x1            8            double array            
Grand total is 2000001 elements using 16000008 bytes             
MATLAB has a total of 2000001 elements using 16000008 bytes      

Star-P® server has a total of 0 elements using 0 bytes            

>> App = ppback(mA)                                                
App =                                                              
        ddense object: 1000-by-1000p                             
>> ppwhos                                                        
Your variables are:                                              
  Name       Size            Bytes        Class                  
  App        1000x1000p      8000000      ddense array           
  mA         1000x1000       8000000      double array           
  mB         1000x1000       8000000      double array           
  n          1x1             8            double array           
Grand total is 3000001 elements using 24000008 bytes             
MATLAB has a total of 2000001 elements using 16000008 bytes      

Star-P® server has a total of 1000000 elements using 8000000 bytes

ppfront is the inverse operation, and is in fact the only interface for moving data back to the 
front end system. This conforms to the principle that once you, the programmer, have 
declared data to be distributed, it should stay distributed unless you explicitly want it back on 
the front end. Early experience showed that some implicit forms of moving data back to the 
front end were subtle enough that users sometimes moved much more data than they 
intended and introduced correctness (due to memory size) or performance problems.

Note that the memory size of the client system running MATLAB, compared to the parallel 
server, will usually prevent full-scale distributed arrays from being transferred back to the 
client.

>> App = rand(1700,1700*p)                                          
App =                                                               
        ddense object: 1700-by-1700p                              
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes         Class                  
  App        1700x1700p      23120000      ddense array           
Grand total is 2890000 elements using 23120000 bytes              
MATLAB has a total of 0 elements using 0 bytes                    

Star-P® server has a total of 2890000 elements using 23120000 bytes
>> b = ppfront(App);                                                
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes         Class                  
  App        1700x1700p      23120000      ddense array           
  b          1700x1700       23120000      double array           
Grand total is 5780000 elements using 46240000 bytes              
MATLAB has a total of 2890000 elements using 23120000 bytes       
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Star-P® server has a total of 2890000 elements using 23120000 bytes

Note: <starp_root> is the path where Star-P® is located. 

The ppback and ppfront commands will emit a warning message if the array already 
resides on the destination (parallel server or client, respectively), so you will know if the 
movement is superfluous or if the array is not where you think it is.

These two commands, as well as the ppchangedist command, will also emit a warning 
message if the array being moved is bigger than a threshold data size (default size being 
100MB). The messages can be disabled, or the threshold changed, by use of the 
ppsetoption command, documented in "Star-P® Functions".

Loading And Saving Data on the Parallel Server

Just as the load command reads data from a file into MATLAB variable(s), the ppload 
command reads data from a file into distributed Star-P® variable(s).    Assume that you have 
a file created from a prior MATLAB or Star-P® run, called imagedata.mat, with variables 
App and Bpp in it. (MATLAB or Star-P® appends the .mat suffix.) You can then read that data 
into a distributed object in Star-P® as follows:

>> ppload imagedata App Bpp                                           
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes        Class                   
  App        1000x1000p      8000000      ddense array            
  Bpp        1000x1000p      8000000      ddense array            
Grand total is 2000000 elements using 16000000 bytes              
MATLAB has a total of 0 elements using 0 bytes                    

Star-P® server has a total of 2000000 elements using 16000000 bytes

While in some circumstances ppload can be replaced by a combination of load and 
ppback, in general distributed arrays in Star-P® will be larger than the memory of the client 
system running MATLAB, so it will be preferable to use ppload. For the same reason, users 
will probably want to use ppsave of distributed arrays rather than ppfront/save.

Note that the file to be loaded from must be available in a filesystem visible from the HPC 
server system, not just from the client system on which MATLAB itself is executing. 
Consequently, if your .mat file is initially located on your client system, then copy the file into 
a working directory on your server.  

The ppload and ppsave Star-P® Commands

The distributed I/O commands ppload and ppsave store distributed matrices in the same 
uncompressed Level 5 .mat-File Format used by MATLAB.
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Information about which dimension(s) of an array were distributed are not saved with the 
array, so ddense matrices retrieved by ppload will, by default, be distributed on the last 
dimension.

Note: The use of *p to make objects distributed and thereby make operators parallel can 
almost always be made backwards compatible with MATLAB by setting p = 1. The 
use of ppload does not have the same backward compatibility.

If you use ppsave to store distributed matrices into a file, you can later use load to retrieve 
the objects into the MATLAB client. Distributed matrices (ddense and dsparse) will be 
converted to local matrices (full and sparse), as if ppfront had been invoked on them. (The 
exception to this operation is that some very large matrices break .mat-File compatibility; if 
ppsave is applied to a distributed matrix with more than 232 rows or columns, or ppwhos 
data requires more than 231 bytes of storage, then load may not be able to read the file.)

To move data from the front-end to the back-end via a file, the MATLAB save command must 
use the -v6 format, as in save('foo','w','-v6') for saving variable w in file foo. Then 
you can use ppload to read the resulting file to the server. This will convert local matrices to 
global matrices, just as if ppback had been invoked, except that the resulting matrices will be 
distributed only on the last dimension.

Star-P®’s ppload command cannot yet read the older Level 4 .mat-File, nor the 
compressed Level 5 format. Use the -v6 flag in the MATLAB client to convert such files to 
uncompressed Level 5 format.

The ppfopen Star-P® Command

Another method of loading of data is through the use of the ppfopen command. By calling 
ppfopen with only a single string argument specifying a target file to open, the contents of 
the file are opened in a read-only mode. The following command opens your_file and 
returns a distributed file identifier of class @dfid.

fid = ppfopen('your_file');

Using a second input argument to ppfopen, further permissions for handling the contents of 
the target file can be specified.

fid = ppfopen('your_file',MODE);

The input MODE can take values that allow for various permissions for viewing or altering the 
file’s contents.

MODE Permission

'rb' read

'wb' write (create if necessary)

'ab' append (create if necessary)
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Note: Only native machine format is supported and the ppfopen interface will return an error 
if the caller tries to specify a different machine format or encoding parameter.

fopen, fread, fwrite, frewind, and fclose

The functions fopen, fread, fwrite, frewind, and fclose have been overloaded to 
work with distributed data, including distributed file identifiers.  

For example, the fread function can be used in the following manner to assign a 1000 by 
1000 matrix to a variable that has previously been associated with the distributed file 
identifier fid:

App = fread(fid,[1000 1000*p]); 

You will notice that fread allows you to specify the distribution properties of the data assigned 
to the distributed variable App.

HDF5, Hierarchical Data Format Version 5

Star-P® supports import and export of datasets in the Hierarchical Data Format, Version 5 
(HDF5). The HDF5 format 

• is widely used in the high-performance computing community, 

• is portable across platforms, 

• provides built-in support for storing large scientific datasets (larger than 2GB) and 

• permits lossless compression of data. 

For more information about the HDF5 file format, please visit http://hdf.ncsa.uiuc.edu/HDF5.

The Star-P® interface to the HDF5 file format currently supports the import and export of 
distributed dense and sparse matrices with double precision and complex double precision 
elements. In addition, a utility function is provided to list meta-data information about all 
variables stored in a HDF5 file. 

The next few sub-sections discuss the syntax of the individual HDF5 commands in more 
detail. 

'rb+' read and write (do not create)

'wb+' truncate or create for read and write

'ab+' read and append (create if necessary)

MODE Permission
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Writing variables to an HDF5 file  

Distributed variables are written to a remote HDF5 file using the pph5write command. This 
command takes a filename, and a list of pairs consisting of a distributed variable and its 
corresponding fully-qualified dataset name within the HDF5 file. If the file already exists, an 
optional string argument can be passed to the command: 'clobber' causes the file to be 
overwritten and 'append' causes the variables to be appended to the file. The default mode 
is 'clobber'. If the write mode is 'append' and a variable already exists in the location 
specified, it is replaced. 

Example 1

To write the distributed variables matrix_a to the dataset /my_matrices/a and 
matrix_b to the dataset /my_matrices/workspaces/temp/matrix_b to the HDF5 file 
temp.h5 in the /tmp directory of the HPC server, you would use: 

>> matrix_a = rand(1000*p);                                                      
>> matrix_b = sprand(1200*p,1200,0.05);                                          
>> 
pph5write('/tmp/temp.h5',matrix_a,'/my_matrices/a',matrix_b,'/my_matrices/work
space/tmp/b');

Example 2

To append a distributed variable matrix_c to the HDF5 file created in the previous example 
to the location /my_matrices/workspace2/temp/matrix_c, one would use: 

>> matrix_c = rand(500*p);                                                      
>> pph5write('/tmp/temp.h5','append',matrix_c,'/my_matrices/workspace/tmp/c');

Reading variables from an HDF5 file 

Datasets in a HDF5 file can be read into distributed variables using the pph5read command. 
It takes a file name and a list of fully-qualified dataset names to read. 

Example 3

To read the dataset, /my_matrices/workspaces/temp/matrix_b into a distributed 
variable, matrix_d, from the file created in the first example, one would use: 

>> matrix_d = pph5read('/tmp/temp.h5', '/my_matrices/workspace/tmp/b');
>> ppwhos                                                              
Your variables are:                                                    
  Name        Size            Bytes        Class                       
  matrix_d    1200px1200      1134528      dsparse array (sparse)      
Grand total is 70304 elements using 1134528 bytes                      
MATLAB has a total of 0 elements using 0 bytes                         

Star-P® server has a total of 70304 elements using 1134528 bytes        
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Querying variables stored inside an HDF5 file

It is possible to obtain a list of variables stored in an HDF5 file and their associated types 
using the pph5whos command that takes in the name of the HDF5 file as its sole argument. 
With a single output argument, the command returns a structure array containing the variable 
name, dimensions and type information. With no output arguments, the command simply 
prints the output on the MATLAB console. 

Example 4

Running pph5whos on the file after running Examples 1 and 2, the following is obtained:

>> pph5whos('/tmp/temp.h5')

Representation of data in the HDF5 file 

This section describes the internal representation of HDF5 files used by the functions 
described previously. If the HDF5 file to be read is not generated using pph5write, it is 
important to read the following subsections carefully. 

Multidimensional arrays

Distributed matrices are stored in column-major (or Fortran) ordering. Therefore, pph5write 
follows the same strategy used by Fortran programs that import or export data in the HDF5 
format: multidimensional matrices are written to disk in the same order in which they are 
stored in memory, except that the dimensions are reversed. This implies that HDF5 files 
generated from a C program will have their dimensions permuted when read back in using 
pph5read, but the dimensions will not be permuted if the HDF5 file was generated either 
using a Fortran program or pph5write. In the former case, the data must be manually 
permuted using ctranspose for two-dimensional and permute for multidimensional 
matrices. 

Complex data 

An array of complex numbers is stored in the interleaved format consisting of a pairs of HDF5 
native double-precision numbers representing the real and imaginary components. 

Table 3-4

Name Size Bytes Class

/my_matrices/a 1000x1000 8000000 double array

/my_matrices/workspace/tmp/b 1200x1200[70304 nnz]  562432 double array 
(sparse)

/my_matrices/workspace2/tmp/c  500x500 2000000 double array
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Sparse matrices 

A sparse matrix is stored in its own group, consisting of three attributes (a sparsity flag, 
IS_SPARSE, the number of rows, ROWS and the number of columns, COLS) and three 
datasets (row_indices, col_indices and nonzero_vals) containing the matrix data 
stored in the triplet form. All attributes and datasets are stored as double precision numbers, 
except IS_SPARSE which is stored as an integer and nonzero_vals which can either be 
double or double complex. 

Limitations

The HDF5 interface in Star-P® currently has the following limitations: 
1. Import and export of variables is restricted to types that can be represented in the Star-P® 

server. Currently, this is restricted to double and complex double elements. 
2. It is not possible to import or export strings, structure arrays or cells. 
3. It is not possible to attach attributes to datasets or groups.
4. Each dataset must be imported or exported explicitly; support for accessing files using 

wild cards or regular expressions is not yet supported. 
5. Only the HDF5 file format is supported. Data files conforming to earlier versions of HDF or 

raw text files must be first converted to the HDF5 format. 

Differences from MATLAB HDF5 support 

The HDF5 import-export features in Star-P® currently differ from that provided in MATLAB in 
the following respects: 
1. Permutations of dimensions for multidimensional arrays. MATLAB only permutes the first 

two dimensions even for multidimensional arrays; the permutation in Star-P® is consistent 
with that used for other Fortran programs 

2. Handling of complex matrices. MATLAB does not support saving of complex matrices 
natively.

3. Handling of sparse matrices. MATLAB does not support saving of sparse matrices 
natively. 

4. Handling of hdf5 objects. Star-P® currently does not support the loading and saving of 
datasets described using instances of the hdf5 class supported by MATLAB. 

5. Direct access to the HDF5 library. Unlike MATLAB Star-P® does not provide direct access 
to the HDF5 library; all access must happen through the pph5write, pph5read and 
pph5whos commands. 

Converting data from other formats to HDF5 
1. Download and build the HDF5 library, version 1.6.5 library. The source files can be down-

loaded from http://hdf.ncsa.uiuc.edu/HDF5/release/obtain5.html. 
2. Download and build the Steven Johnson's H5utils package available at 

 http://ab-initio.mit.edu/wiki/index.php/H5utils.
3. The tool h5fromtxt can be used to convert a text file into the HDF5 format and the tool 

h5fromh4 can be used to convert a data file in earlier HDF formats into HDF5. 
4. Once converted, the resulting data files can be directly read in using the pph5read com-

mand. 
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Chapter 4
Task Parallelism with Star-P® and MATLAB

In the previous chapter, the operators used on distributed arrays operated on the entire 
array(s) in a fine-grained parallel approach. While this operation is easy to understand and 
easy to implement (in terms of changing only a few lines of code), there are other types of 
parallelism that don't fit this model. The ppeval function allows for coarse-grained parallel 
computation, otherwise known as MIMD (multiple instruction multiple data) or task 
parallelism, where operations are conducted on blocks, coarse-grains, of the data. This 
coarse-grained computation is distributed uniformly over the number of parallel processors. 
This mode of computation allows non-uniform parallelism to be expressed (e.g., the sum 
operator could be used on odd columns and the max operator on even columns). 

This chapter contains information on performing operations in task parallel and includes the 
following:

• "The ppeval Function: The Mechanism for Task Parallelism"

• "Star-P® Naming Conventions"

• "Transforming a for Loop into a ppeval Call"

• "ppeval Syntax and Behavior"

• "ppevalsplit"

• "Choosing Your Task Parallel Engine (TPE)"

• "Per Process Execution"

• "Calling Non-”M” Functions from within ppeval"

• "Workarounds and Additional Information"

The ppeval Function: The Mechanism for Task Parallelism  

ppeval allows you to execute built-in functions and user-defined functions in parallel on a 
High Performance Computer. ppeval handles the distribution of data and code over the 
processors in the HPC, as well as the execution and the gathering of computational results. 
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To define some of relevant terminology for ppeval, let’s look again at the example from 
“Extending MATLAB with Star-P®”.

Xpp = rand(1000,1000,100*p);
Ypp = ppeval('inv',Xpp);

In this example, the ppeval call splits up the variable Xpp into 100 individual slices (by default 
splitting is done along the last dimension). The slices are then divided over the available 
processors; so in the case of 100 slices and 10 processors, each processor would receive 10 
slices. Each processor iterates over the slices it receive and applies the function 'inv' to 
each of the slices. When each processor completed its job, the results of all processors are 
combined, preserving order, and returned as the output value.

You can view ppeval as a parallel loop. You cannot assume anything about the order in 
which the iterations occur or the processor(s) on which they occur. Since the computations of 
the individual iterations are performed in complete isolation of all the other iterations, ppeval 
requires that the computation being performed is independent over the iterations. 
Consequently, functions that contain recursive relations or that update variables based on 
sequentially previous iterations inside the function body are not applicable for task-parallel 
execution.

Any function passed to ppeval must be either a built-in MATLAB1 function or a 
user-supplied MATLAB function in a .m file; a function named foo for example. As with any 
function called from MATLAB (or Star-P®), the function must exist in a file of the name foo.m 
located in one of the directories visible to the MATLAB directory search path on the system 
where the Star-P® client is running. As well as the particular function itself, files containing 
any functions that are called by foo.m, down to the level of the built-in operators, must be 
accessible in directories in the MATLAB search path. All of these identified files will be 
transferred to the HPC server for execution. For a discussion on calling a non-MATLAB 
function via the MATLAB system function, see “Calling non-MATLAB functions within a 
ppeval.”

1. A subset of the MATLAB operators are supported. While you might want to extend this set with 
routines that are part of MATLAB or one of its toolboxes, The MathWorks software license 
prohibits this for the way the ppeval is implemented. To comply with this prohibition, ppeval 
will not move to the HPC server any routines that are generated by The MathWorks.
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Star-P® Naming Conventions

Star-P® commands and data types generally use the following conventions, to distinguish 
them from standard MATLAB commands and data types:

• Most Star-P® commands begin with the letters pp, to indicate parallel. For example, 
the Star-P® ppload command loads a distributed matrix from local files. Exceptions 
to this rule include the split and bcast commands.

• Star-P® data types begin with the letter d, to indicate “distributed”. For example, the 
Star-P® dsparse class implements distributed sparse matrices. 

The following convention for displaying Star-P® related commands and classes is used 
throughout this chapter.

Transforming a for Loop into a ppeval Call 

The typical work-flow of introducing ppeval into a code that is currently serial takes the 
following steps:

1. Identify a for loop that is embarrassingly parallel.

2. Determine the input and output variables of the for loop.

3. Transform the body of the for loop into a function.

4. Call your newly defined function with ppeval using the correct input and output 
variables.

Here we will walk through an example of these steps. Below we will discuss ways in which 
the user can control the splitting and broadcasting behavior of the input variables to ppeval.

Step 1: Identify a for loop that is embarrassingly parallel.

x = rand(n,n,m);
y = rand(n,m);
z = zeros(n,m);

for i = 1:m
    [v d] = eig(x(:,:,i));

Command/Variable Font

p & other dlayout variables bold green font
Distributed variables bold blue font

Star-P® functions bold black font
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    a = v*y(:,i) + diag(d);
    z(:,i) = x(:,:,i)\a;
end

The for loop in this example is indeed embarrassingly parallel since it contains no recurrent 
relations and/or variable updates. In principle, if we had m computers, then we could compute 
one iteration of the for loop on every computer and obtain the correct result after 
recombining them.

Step 2: Determine the input and output variable of the loop

The input variables to the loop are x and y and the output variable is z. The variables v, d, 
and a are variables whose scope is limited to the for loop.

Step 3: Transform the body of the for loop into a function

The function foo1, defined below, contains the for loop body content with output variable z 
and input variables x and y.

function z = foo1(x,y)

[v d] = eig(x);
a = v*y + diag(d);
z = x\a;

Note that we removed all of the indexing operations that are present in the for loop body in 
Step 1. Since the ppeval process splits the variables x and y into individual slices along the 
last dimension (by default), ppeval does the indexing operations for you in the process of 
dividing of the input data and gathering the output data.

Step 4: Call function defined in Step 3 with ppeval

Now that we have the defined our function foo1 and we know the input and the output 
arguments, we can perform the ppeval call:

X = rand(n,n,m*p);
Y = rand(n,m*p);
Zpp = ppeval('foo1',X,Y);

This completes the transformation of the serial for loop to a task-parallel execution of the 
same code with Star-P®.

Note: X and Y do not necessarily have to be distributed objects. See "Splitting" and 
"Broadcasting" for more details.  
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Note: It might seem natural that you could transform a for loop to run in parallel just 
by adding a *p to the loop bounds. Unfortunately, this does not have the desired 
effect. The simplicity of this approach has not been lost on the Star-P® developers, 
and some support for this method may appear in a future release.

ppeval Syntax and Behavior

This section covers the following topics:

• “ppeval Syntax Grammar”

• “Requirements of Functions Passed to ppeval”

• “Input Arguments”

• “Output Arguments”

• “Examples of ppeval Usage”

• “Star-P® M TPE”

• “Star-P® Octave Engine”

• “C/C++ Engine for Running Compiled C/C++ Package Functions”

• “String Arrays”

• “Splitting on a Scalar”

• “Global Variables”

ppeval Syntax Grammar

The syntax of ppeval is similar to that of eval or feval.

[o1 o2 ... oN] = ppeval('foo', In1, In2, ..., InN);

foo is the name of the function you would like to execute in task-parallel. In1, In2, ... are the 
input arguments to func and o1, o2, ... are the output arguments to foo. The supported 
input argument types are: strings, function handles, scalars, arrays, and matrices (see 
workaround section below for input arguments of type string-array and struct-array) and the 
supported output arguments are scalars, arrays, and matrices.
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Requirements of Functions Passed to ppeval
ppeval puts a few requirements on a function foo: 

• The dimensions of all input arguments that are split up over the processors all need 
to have the same size.

• At least one of the input arguments needs to be split up over the processors, or in 
other words, at least one of the input arguments needs to be an array or matrix.

• The function foo can have a maximum of 58 input arguments.

• The function foo must return at least 1 output argument.

• The output arguments of the function need to have the same size for each iteration 
of the function foo (see Output Arguments)

• foo must be an actual MATLAB function file, it cannot be a script file.

• The function foo cannot contain nested functions.

Input Arguments

The user has complete control over the splitting and broadcasting of input variables with the 
split/ppsplit and bcast/ppbcast commands. These commands can only be used in 
conjunction with the ppeval command.

Default Behavior

By default all scalars, strings, and function handles are broadcast to every processor on the 
HPC. Every processor receives an identical copy. Arrays and matrices are split up into slices 
along the last dimension and divided over the processors. The default behavior of splitting 
and broadcasting input arguments can be overridden by the user.

Splitting

To split an array or matrix in a dimension other than the last dimension, use the split 
command in conjunction with ppeval. The syntax of the split/ppsplit commands are

split(A,DIM)
ppsplit(A,DIM)

where A is the input argument and DIM is the dimension along which you want to split the 
variable A. The possible arguments to split and ppsplit are:

split(A,DIM) or ppsplit(A,DIM): Split variable A along dimension DIM
split(A,0)   or ppsplit(A,0)  : Split over individual elements of variable A
split(A)     or ppsplit(A): Split variable A along final dimension (default)

As stated above the split and ppsplit command can only be used in conjunction with 
ppeval. For example:
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Xpp = rand(100*p,1000,1000);
Ypp = ppeval('inv',split(Xpp,1));

performs 100 matrix inversions. Each inversion is performed on a matrix 1000-by-1000 in 
size, because the variable Xpp is split along the first dimension.

Broadcasting

To broadcast an array or matrix to every processor, include the argument in a bcast 
command. You would use the bcast command if you want to send an array or matrix 
variable in its entirety to every processor. As with ppsplit, the ppbcast command needs to 
be used in conjunction with the ppeval command. For example, to add a 2D matrix, Xpp, to 
every slice of the 3D array Ypp, then issue the following command:

Xpp = rand(n*p);
Ypp = rand(n,n,m*p);
Zpp = ppeval('+',Ypp,bcast(Xpp));

This ppeval command is equivalent to the following for loop, apart from the fact it is 
performed in parallel as opposed to serial execution:

x = rand(n);
y = rand(n,n,m);
z = zeros(n,n,m);

for i = 1:m
    z(:,:,i) = y(:,:,i) + x;
end

Supported Input Argument Types

The supported input argument types are: strings and functions handles, as well as scalars, 
arrays, and matrices of type double and complex double. Scalars, arrays, and matrices of 
other types (for example single, ints, logical) are first converted to type double before being 
transferred to ppeval. By default, strings, function handles and scalars are broadcast.

Serial ppeval of Functions with Scalar Inputs

This section discusses how you can use ppeval in non-broadcast (serial mode) with a single 
scalar input argument.

Using Star-P® Octave TPE

Using ppeval ('functionname',<scalar-value>) with the Octave engine 
(octave) produces the error shown in the example.

Example

>> ppsetoption('TaskParallelEngine','octave')
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>> ppeval('rand',1)
??? Error using ==> ppeval_octave at 208 
At least one argument in a call to ppeval must be split  
(either implicitly or explicitly)

The message indicates that at least one of the input arguments must be split. By default scalar 
input arguments are not split. They are broadcast. It is possible to split on a scalar by explicitly 
including the split command, such as: 

>> ppeval('rand',split(1)); 

This results in one function evaluation of the function rand with the input argument 1.

Using Star-P® M TPE

Using ppeval('myfunction',<scalar-value>) with the Star-P® M 
(starp_tpe) task-parallel engine results in the execution of the function myfunction) on 
each Star-P® HPC server process with each using the input argument <scalar-value>.

Example
>> ppsetoption('TaskParallelEngine','starp_tpe') 
>> ppeval('ones',1 )  % This example was run on a two processor install 

ans =  
    1x2 double

 So, the execution of ppeval is effectively a per process evaluation of function ones. If you 
want to have just one function evaluation use the split function. 

Example

>> ppsetoption('TaskParallelEngine','starp_tpe') 
>> ppeval('rand',split(1))% This syntax works the same as w/ the octave engine.
ans = 
    0.8147

Client vs. Server Variables

In the examples above, we used the *p construct to create the data that ppeval operates 
on. It is now a necessary requirement that ppeval operates on server variables only. In the 
case that ppeval receives a client variable, say a MATLAB variable, ppeval will first move 
the client variable to the server. Then the task parallel operation will be performed. Hence the 
result of operating on a client or server variable will be exactly the same. However, since the 
client variable must be moved from the client to the server, you will incur a performance 
penalty (moving large amounts of data of networks can be costly).
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Distribution of input variables

The Star-P® server stores variables in a distributed matrix fashion. The information/memory 
contained by one variable is divided across the processors with each processor having 
access to part of the data. Star-P® supports several distributions. 2D matrices can be stored 
by rows or columns, where each processor has access to a single set of rows or columns 
respectively. ND arrays can be distributed only along one of the dimensions.

For the correctness of the ppeval execution, the dimensions of distributions for server 
variables are not important. However, the dimensions of distributions do have an effect on the 
performance characteristics of the ppeval execution. The best performance is achieved 
when the distributed dimension and the split dimension are the same; for example, splitting 
an input variable Xpp, defined by Xpp = rand(10,10*p,10);, as push-pull(Xpp,2). 

This superior performance occurs because all of the data is already distributed to the correct 
processors. As a counter-example, if an input variable is row-distributed (along the first 
dimension of a 2D matrix), and the ppeval splits the input along the columns (along the 
second dimension of a 2D matrix), then the first operation that must be performed is a 
distribution change of the input data. These operations do not come free, because they do 
cost communication time to perform. Consequently, the optimal performance of a ppeval 
operation occurs when all of the variables to be “split” are distributed along the same 
dimension as the dimension requested for the split or ppsplit operations.

Output Arguments

The supported output arguments to ppeval are scalars, arrays, and matrices of type double 
and complex-double. Scalars, arrays, and matrices of different types are converted to double 
before being handed from the task parallel engine to Star-P®. Additionally, each of the output 
arguments of the function called by ppeval need to have the same size for each iteration, or 
for each input slice for that function. For example, the following function func2, with input 
scalar variables in1 and in2, always returns output variables of size 1-by-10, 3-by-5 and 
13-by-1:

function [out1 out2 out3] = func2(in1, in2)

out1 = zeros(1,10);
out2 = zeros(3,5);
out3 = zeros(13,1);

out1(:) = in1 + in2;
out2(:) = in1 / in2;
out3(:) = in1 * in2;

As you can see, for every call to func2, the outputs will have exactly the same size. The 
requirement that the function called by ppeval returns arguments of the same size is 
important because of the way that ppeval returns the aggregate of task parallel 
computation. ppeval laminates the outputs for each iteration together along an additional 
dimension. The rules for laminating the output are the following:
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1. If the output is a scalar, then laminate them in the column direction, and distribute by 
columns.

2. If the output is a row-vector, then laminate them in the row dimension, and distribute by 
rows.

3. If the output is a column-vector, then laminate them in the column dimension, and 
distribute by columns.

4. If the output is a 2D array or ND array, then laminate them in an additional dimension, 
and distribute along that dimension.

This means that if the size of the output argument of the function called by ppeval is 
k-by-1 and the ppeval operation performs r iterations, then the output of ppeval is of size 
k-by-1-by-rp.

Examples of ppeval Usage

Let’s first consider a simple example. Rather than using the built-in sum function on a 
ddense array, you could code it using ppeval and sum on a row or column.

>> n = 100
n = 
   100
>> App = 1:n*p
app = 
        ddense object: 1-by-100p
>> Bpp = repmat(App,n,1)
bpp = 
        ddense object: 100-by-100p
>> ppfront(Bpp(1:6,1:6))
ans = 
     1     2     3     4     5     6
     1     2     3     4     5     6
     1     2     3     4     5     6
     1     2     3     4     5     6
     1     2     3     4     5     6
     1     2     3     4     5     6
>> Cpp = ppeval('sum',Bpp)
Cpp = 
        ddense object: 1-by-100p
>> ppfront(Cpp(1,1:6))
ans = 
   100   200   300   400   500   600
>> Epp = ppeval('sum',ppsplit(Bpp,1))
Epp = 
        ddense object: 1-by-100p
>> ppfront(Epp(1,1:6))
ans =
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        5050        5050        5050        5050        5050        5050

• The first call in the previous ppeval example uses the default behavior to split its 
arguments along the last dimension (columns, in the case of 2D matrices).

• The variable b in the previous example did not need to be distributed, created with 
the *p construct, or transferred to the server using ppback, because ppeval 
automatically handled its distribution on the server.

• In the second call to ppeval, it was desired to split along rows, so the ppsplit 
function was used explicitly to obtain that result.

In this example, the function 'sum' was called on each column of the input array. While 
useful for a simple example of functionality, you would not do this in practice because the 
sum operator on the whole array has the same behavior and is simpler to use. However, as 
shown in the next example, the function passed to ppeval does not have to perform the 
same computation for each input, and thus can be used to implement MIMD/task parallelism.

In this example, we will make use of the MATLAB function quad, which computes the definite 
integral of a function over an interval. The function being integrated could be highly nonlinear 
in its behavior, but ppeval supports that functionality.

If the file func3.m contains the following:

>> type func3
function b = func3(a)
b = (a^2-1) / (a+eps);

then ppeval can be called as:

>> n = 100;             % number of intervals
>> App = (0:(n-1)*p)/n  % lower bounds of intervals
app = 
        ddense object: 1-by-100p
>> Bpp = (1:n*p)/n      % upper bounds of intervals
bpp = 
        ddense object: 1-by-100p
>> Bpp = ppeval('quad',@func3,App,Bpp)
cpp = 
        ddense object: 1-by-100p
>> ppfront(Cpp(1,1:6))
ans =
  -31.4384   -0.6930   -0.4052   -0.2873   -0.2227   -0.1818

This example also illustrates the use of a function handle (@func3).

ppevalsplit

In the case where the function returns a different size output for every iteration (see func4 
below) the ppeval procedure will fail since there is no logical way of laminating the output 
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values of the function. In this case, Star-P® provides the user with the ppevalsplit 
command, which returns the outputs of the individual iterations in a cell array to the client. 
Cell arrays are capable of holding variables of different sizes. Although the cell array returned 
from a ppevalsplit call is stored as a variable of type dcell on the Star-P® server, when 
indexing into a dcell array, the contents are automatically returned to the client. An example 
of a function that returns differently sized outputs and how to use it with ppevalsplit 
follows:

function out1 = func4(in1)
%
% func4 returns a random column vector of size in1-by-1
%
out1 = rand(in1,1);

end

Call the function func4 with ppevalsplit:

in = 1:10;
outpp = ppevalsplit('func4',in);

The output outpp will be of type dcell and contain:

outpp{1}  : 1-by-1 random vector
outpp{2}  : 2-by-1 random vector
...
outpp{10} : 10-by-1 random vector

Choosing Your Task Parallel Engine (TPE)

When performing task parallel operations in Star-P®, ppeval and ppevalsplit allow for 
you to make a choice as to the environment that will be utilized for performing task parallel 
operations. 

In using ppeval or ppevalsplit, use one of the following as your task parallel engine:

• Star-P® M TPE 

• Star-P® Octave Engine

• C/C++ Engine for Running Compiled C/C++ Package Functions

The Star-P® M TPE and Star-P® Octave TPE provide high performance computing  
compatible with MATLAB m-files. 

Note! The Star-P® M TPE provides the fastest performance times for non-Altix users.
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When choosing the option of using your own compiled C/C++ functions, packages must be 
loaded on to the server and used in accordance with the instructions specified in the “Star-P® 
Software Development Kit (SDK) Tutorial and Reference Guide”.

Note! Choose an Octave task-parallel engine for task parallel applications that use sparse arrays 
or if you are running Star-P® on Altix. Star-P® TPE support for sparse task parallel 
operations will be implemented as a follow on to Star-P® Release 2.7.

Star-P® M TPE

The Star-P® M task-parallel engine (starp_tpe) is native to Star-P® and yields the best 
overall performance for non-Altix users when using ppeval. Select it by using the following 
call:

ppsetoption('TaskParallelEngine','starp_tpe')

Note! Choose an Octave task-parallel engine for task parallel applications that use sparse arrays 
or if you are running Star-P® on Altix. Star-P® TPE support for sparse task parallel 
operations will be implemented as a follow on to Star-P® Release 2.7.

Star-P® Octave Engine

You can choose Octave as the task parallel engine used when you call ppeval. If your task 
parallel codes require the use of MEX file functionality or include functionality that was not 
included in Octave 2.9.5, then you will want to set the task parallel engine to Octave 2.9.9 by 
calling:

ppsetoption('TaskParallelEngine','octave-2.9.9')

Within a given Star-P® session, only a single version of Octave can be set using 
ppsetoption.

For example, once there has been a call to ppsetoption using:

ppsetoption('TaskParallelEngine','octave-2.9.9')

you cannot switch to Octave 2.9.5 during a particular Star-P® session. By initially calling:

ppsetoption('TaskParallelEngine','octave-2.9.5')

then you are setting the Octave version to be 2.9.5 for the duration of a session. The first call 
to ppsetoption('TaskParallelEngine','octave-2.9.x') sets the available 
Octave engine for that particular Star-P® session.
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C/C++ Engine for Running Compiled C/C++ Package Functions

In order to set the task parallel engine to use your own compiled C/C++ functions, 
ppsetoption can be configured in the following manner:

ppsetoption('TaskParallelEngine','C')

This allows you to write functions that run in parallel in C/C++ rather than Octave or Star-P® 
M with the Star-P® TPE. Use it if you have serial libraries in C and C++ you want to use in a 
task parallel manner. Using ppeval or ppevalsplit makes it easy to write wrapper 
functions in C/C++ using the task parallel Star-P® SDK API. When using ppeval or 
ppevalsplit in this manner, you need to build the function on the server and copy the 
module over to the HPC server machines.

The function pploadpackage can be used to load previously compiled shared object 
libraries whose contents can then be called using ppeval. Loading a compiled library for 
task parallel operations using pploadpackage requires calling syntax in one of two 
manners:

stringTP = pploadpackage('C','/path/to/package.so','TPname')
stringTP = pploadpackage('C','/path/to/package.so')

In either case, pploadpackage loads a package named 'package.so' containing 
compiled functions for later use in ppeval. The initial string 'C', specifies the language in 
which the target package is written. Currently, only C or C++ libraries can be loaded on the 
server for task parallel operation, and both require the same initial string. The keyword 
argument “name” specifies a user-defined name that is used for identification of the task 
parallel package on the server. The string provided with the keyword argument name is 
returned in the function output stringTP. If the name keyword is not provided, then the 
naming convention utilized for assigning an output string to stringTP is to take the filename 
without path, extension, or underscores, converted to lowercase. This change ensures that 
the default name can always be used to prefix a function name, and is recognizable by the 
Star-P® client and server.

For more information about the task parallel API for using ppeval and ppevalsplit with 
compiled languages, see the “Star-P® Software Development Kit (SDK) Tutorial and 
Reference Guide”.

Per Process Execution

It is often useful to perform a certain operation only once per processor rather than 
performing the exact same operation within each iteration. Examples of such operations 
include opening and closing files or setting global variables. To enable a per process 
execution, one can use the Star-P® function named np, which returns the number of 
processors active in the current Star-P® session. For instance, the following sections of code 
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exemplify how to open a file for reading, read and process the data in the file, and close the 
file:

% Open the file in the variable filename on each ppeval process
fidpp = ppeval('open_file',filename,ppsplit(1:np));
% Apply algorithm to data samples contained in filename
resultspp = ppeval('process_file',1:num_data_samples);
% Close the file on each process
ppeval('fclose',fidpp);

where the functions open_file and process_file could look something like:

function fid = open_file(filename, pid)
% store file descriptor in global variable as well as return to client
global fid
%
fid = fopen(filename,'r');
gfid = fid;

and

function result = process_file(sample)
%
global gfid
% Read part of the data using fseek and fwrite and take an fft
sample_size = 8192;
% fseek to the correct location in the file
fseek(fid,sample_size*(sample-1),-1);
% Read the relevant section of the data
result = fread(gfid,sample_size);
% Apply the Fourier transform
result = fft(result);

Note that in the first line of the example above we used ppsplit(1:np) instead of 1:np. 
This is because in the case that np happens to be equal to 1, the expression 1:np returns a 
scalar. Normally, this input syntax is not valid due to the fact ppeval has no input argument 
over which it can iterate. In other words, ppeval received a string and a scalar, both of which 
will be broadcast by default. To override this behavior, use the ppsplit command on the 
1:np expression.

Calling Non-”M” Functions from within ppeval

The ppeval function can also be used to call a non-MATLAB program, via the system 
function and get results from that executable back into the Star-P® context. The simple 
example here illustrates a function callapp2 that calls a pipeline of shell commands that 
returns the number of currently executing processors for a given user ID.

>> type callapp2                              
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function z = callapp2(uid)                    
s = sprintf('ps -ael | grep %i | wc -l\n',uid)
[status, result] = system(s);                 
z = str2num(result);                          

Calling this from ppeval works as follows:

>> App = ppback([501 503 563 570])  
App =                               
        ddense object: 1-by-4p    
>> Bpp = ppeval('callapp2',split(App))
Bpp =                               
        ddense object: 1-by-4p    
>> ppfront(Bpp)                     
ans =                             
    50     0     0     4          

Note: In this case, the variable App has been split evenly to the available processors, 
which can be displayed by np. The default behavior of split(App) is to 
distribute along the last dimension, for example, split(App,2).

You may want to note several things about this example. 

1. It is not necessary for the number of calls made by ppeval to match the number of 
processors. ppeval uniformly allocates the number of calls over the number of 
processors available to the Star-P® session when the call is made.

2. Second, there is no built-in way for each column to know which column of the input it 
is. If that information is necessary for some reason, you will need to create such a 
vector and pass it in as another argument. For example, you can use the following 
statement:

>> Bpp = ppeval('callapp2',App,1:size(App,2));

3. Because ppeval is intended to take advantage of parallelism, each invocation of 
callapp2 is done on a single processor of the HPC server. Star-P® takes care of the 
details of moving the function file (callapp2 in this case) to the file system on the HPC 
server. Screen output from the called function will not appear on the Star-P® client. If 
you are reading or writing files in the called function, you will need to do those via paths 
relative to the file system structure on the server, not the current working directory of 
the MATLAB client. (Of course, if the file systems are the same between the client and 
the server, for example if they are NFS-mounted, then this is not an issue.)

By extension of this last example, almost any executable program could be called in parallel 
via ppeval using the system command, including end-user applications (written in C, C++ 
or Fortran) or third-party applications such as ANSYS, NASTRAN, FLUENT, or Gaussian. For 
further information on incorporating external applications in Star-P®, see the “Star-P® 
Software Development Kit (SDK) Tutorial and Reference Guide”.
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Workarounds and Additional Information

Below we discuss a couple of workarounds to some of the limitations that result from the 
requirement on the types of the input and output argument to ppeval. There are however 
several ways to work around these limitations. This section provides guidelines for the 
following:

• “String Arrays”

• “Splitting on a Scalar”

• “Global Variables”

String Arrays

To work with string arrays and ppeval, we use the fact that characters can be converted to 
variables of type double and doubles can be converted to variables of type character. So with 
minor modifications to a code, we can incorporate string arrays into applications that use 
ppeval to increase their performance.

str_arr = ['filename1';'filename2';'filename3'];
fnames = char(ppfront(ppeval('func',double(str_arr))));

with func defined below as follows:

function y = func(x)

y = x;

The ppfront command in this example is necessary since the char function has not been 
implemented in Star-P® and since Star-P® currently can only store objects of type double or 
double-complex.

Splitting on a Scalar

As mentioned in the section “Per Process Execution” above, it is possible to ppsplit on a 
scalar. This is a useful capability when one wants to do something only once, as in reading in 
an ASCII file on the server.

Global Variables

When running code inside of a ppeval command, several global variables that are specific 
to Star-P® are defined. These are:

1. PP_COMM_SIZE : The number of processors and ppeval engine processes.

2. PP_MY_RANK : The rank of this ppeval engine process, running from 0 to 
PP_COMM_SIZE-1.
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3. PP_TEMP_DIR : The temporary work directory for the ppeval engine process.

4. PP_CUR_ITER : The value of the current iteration for each ppeval engine process. 
The PP_CUR_ITER counter runs from one to the number of slices for each ppeval 
engine process.
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Chapter 5
Tips and Tools for High Performance Star-P® Code

Star-P® enables MATLAB users to harness the computing power of HPC systems from within 
their familiar desktop environment. But as with any other software development environment 
or tool, there are advantageous and disadvantageous methods of using Star-P®. 

This chapter provides tips for structuring your MATLAB codes for optimal performance using 
Star-P® and describes tools that can be utilized for monitoring and profiling the performance 
of your MATLAB applications using Star-P®. The tips and tools contained in this chapter are 
organized into the following sections:

•  "Performance and Productivity"

•  "Tips for Data Parallel Code"

•  "Tips for Task Parallel Code"

•  "Using External Libraries"

• "Integer Arithmetic in Star-P® Compared with MATLAB®"

•  "Accuracy of Star-P® Routines"

•  "Configuring ppsetoption for High Performance"

•  "Performance Tuning and Monitoring"

•  "UNIX Commands to Monitor the Server"

Performance and Productivity

The two most common reasons for users moving off their desktops to parallel computers are:

• to solve larger problems

• to solve problems faster
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By contrast, users solve problems with MATLAB to take advantage of:

• ease of use

• high level language constructs

• productivity gains

To make the most of Star-P®, you need to find your own “comfort level” in the trade-off 
between productivity and performance. This is not a new trade-off. In 1956, the first so-called 
high level computer language was invented: FORTRAN. At the time, the language was highly 
criticized because of its relatively poor performance compared to programs that were highly 
tuned for special machines. Of course, as the years passed, the higher-level language 
outlasted any code developed for any one machine. Libraries became available and 
compilers improved.

This lesson is valuable today. To take advantage of Star-P®, you will benefit from simply 
writing MATLAB code, and inserting the characters *p at just the right times. You can improve 
performance both in terms of problem sizes and speed by any of the following means:

• restructure the serial MATLAB program through vectorization (described in 
“Vectorization”) 

• restructure the serial MATLAB program through uses of functionally equivalent 
commands that run faster

• restructure the serial MATLAB program through algorithmic changes

You may not wish to change your MATLAB programs. Programs are written in a certain style 
that expresses the job that needs to be done. Psychologically, a change to the code may feel 
risky or uncomfortable. Programmers who are willing to make small or even large changes to 
programs may find huge performance increases both in serial MATLAB and with Star-P®.

Typically, changes that speed up serial MATLAB also speed up Star-P®. In other words, the 
benefits of speeding up the serial code multiply when going parallel.

You may want to develop new applications rapidly that work on very large problems, but 
absolute performance may not be critically important. The MATLAB operators have proven to 
be very powerful for expressing typical scientific and engineering problems. Star-P® provides 
a simple way to use those operators on large data sets. Today, Star-P® is early in its product 
life, and will undoubtedly see significant optimizations of existing operators in future releases. 
Your programs will transparently see the benefit of those optimizations. You benefit from ease 
of use and portability of code today.
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Tips for Data Parallel Code

Vectorization

Vectorization is the process of converting a code from explicit element-by-element 
calculations to higher level operators that operate on entire vectors or arrays at a time. 
Vectorization reduces the amount of time spent in MATLAB or Star-P® bookkeeping 
operations and increases the amount of time spent doing the mathematical operations that 
are the purpose of your program. Vectorization is a process well known to many experienced 
MATLAB programmers, as it often gives markedly better performance for MATLAB execution. 
In fact, The MathWorks provides an online tutorial about vectorization at 
http://www.mathworks.com/support/tech-notes/1100/1109.html. The process of vectorization for 
both MATLAB and Star-P® execution is the same.

Vectorization speeds up serial MATLAB programs and eases the path to parallelization in 
many instances.

Note: The following MATLAB timings were performed on a Dell Dimension 2350. The 
Star-P® timings were performed on an SGI Altix system. Note that small test 
cases are used so that the unvectorized versions will complete in reasonable 
time, so the speedups shown in these examples are modest.

Example 4-1: Sample summation of a vector

The following MATLAB® code is not vectorized:

>> v = 1:1e6;                        
>> s = 0;                            
>> tic;                              
>> for i=1:length(v), s = s+v(i); end
>> toc;                              
Elapsed time is 0.684787 seconds.    
>> s                                 
s =                                  
   5.0000e+11                        

The following line is vectorized:

>> v = 1:1e6;                    
>> tic;                          
>> s = sum(v);                   
>> toc;                          
Elapsed time is 0.003273 seconds.

The two ways of summing the elements of v give the same answer, yet the vectorized version 
using the sum operator runs more than 100 times faster. This is an extreme case of the 
speed-up due to vectorization, but not rare. Expressing your algorithm in high level operators, 
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provides more opportunities for optimization by Star-P® (or MATLAB) developers within those 
operators, resulting in better performance. 

The following MATLAB code is parallelized:

>> vpp = 1:1e6*p;
>> s = sum(vpp);

Based on the vectorized form, it is straightforward to move to a parallel version with Star-P®. 
Note that the unvectorized form, since it’s calculating element-by-element, would be 
executing on only a single processor at a time, even though Star-P® would have multiple 
processors available to it! 

Example 4-2: Simple polynomial evaluation

The following MATLAB code is not vectorized:

>> v = 1:1e7;                                    
>> w = 0*v;                                      
>> tic;                                          
>> for i=1:length(v), w(i) = v(i)^3 + 2*v(i); end
>> toc;                                          
Elapsed time is 19.815496 seconds.               
% The following code is vectorized               
>> tic;                                          
>> w = v.^3 + 2*v;                               
>> toc;                                          
Elapsed time is 2.137521 seconds.                
% The following code is parallelized             
>> vpp = 1:1e7*p;                                  
>> tic;                                          
>> wpp = vpp.^3 + 2*vpp;                               
>> toc;                                          
Elapsed time is 0.118621 seconds.                

This example shows exactly the value of vectorization: it creates simpler code, as you don’t 
have to worry about getting subscripts right, and it allows the Star-P® system bigger chunks 
of work to operate on, which leads to better performance.

Example 4-3: BLAS-1 compared to BLAS-3 matrix multiplication

This example compares two methods of multiplying two matrices. One (partially vectorized) 
uses dot n2 times to calculate the result. The vectorized version uses the simple * operator 
to multiply the two matrices; this results in a call to optimized libraries (PBLAS in the case of 
Star-P®) tuned for the specific machine you’re using. These versions compare to the BLAS 
Level 1 DDOT and BLAS Level 3 DGEMM routines, where exactly the same effect holds. 
Higher-level operators allow more flexibility on the part of the library writer to achieve optimal 
performance for a given machine.
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Contents of the script mxm.m:

>> type mxm                     
for i=1:n                       
  for j=1:n                     
    c(i,j) = dot(a(i,:),b(j,:));
  end                           
end                             
>> n = 1000;                    
>> a = rand(n); b = rand(n);      
% Unvectorized                    
>> tic; mxm; toc;                 
Elapsed time is 70.821620 seconds.
% Vectorized on a single processor
>> tic; d = a*b; toc;             
Elapsed time is 0.431142 seconds. 
% Vectorized and parallel         
>> npp = n*p;                       
>> app = rand(npp); bpp = rand(npp);      
>> tic; dpp = app*bpp; toc;             
Elapsed time is 0.118349 seconds. 

 Example 4-4: Recognizing a histogram

This example is a bit fancy. If you are going to restructure this construct, it requires you to 
recognize that two computations are the same; the first is not vectorized, while the second 
may be considered vectorized. Here the trick is to recognize that the code is computing a 
histogram and then cumulatively adding the numbers in the bins.

Form 1: Unvectorized and unrecognized:

>> v = rand(1,1e7);                                                              
>> w = [];                                                                       
>> i = 0;                                                                        
>> tic;                                                                         
>> while (i<1), i=i+0.1; w = [w  sum(v<i)]; end                                      
>> toc                                                                          
Elapsed time is 0.947873 seconds.                                                 
>> w.'                                                                          
ans =                                                                           
      997890     
     1998324
     2996577
     3997599
     4999280
     6000307
     7000870
     8000829
     9000054
    10000000
    10000000
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Form 2: Vectorized cumulative sum and histogram: 
                                                                                
>> tic; w = cumsum(histc(v,0:.1:1)); toc                                           
Elapsed time is 0.382109 seconds.                                                 
>> w.'                                                                          
ans =                                                                           
      997890
     1998324
     2996577
     3997599
     4999280
     6000307
     7000870
     8000829
     9000054
    10000000
    10000000

As one would expect, the vectorized version works best in Star-P® as well.

Star-P® Solves the Breakdown of Serial Vectorization 

For all but the smallest of loops, vectorization can give enormous benefits to serial MATLAB 
code. However, as array sizes get larger, much of the benefit of serial vectorization can break 
down. The good news is that in Star-P® vectorization is nearly always a good thing. It is 
unlikely to break down.

The problem with serial MATLAB is that as variable sizes get larger, MATLAB swaps out the 
memory to disk. This is a very costly measure. It often slows down serial MATLAB programs 
immensely. 

There is a serial approach that can partially remedy the situation. You may be able to rewrite 
the code with an outer loop that keeps the variable size small enough to remain in main 
memory while large enough to enjoy the benefit of vectorization. While for some problems 
this may solve the problem, users often find the solution ugly and not particularly scalable. 
The other remedy uses the Star-P® system. This example continues to use vectorized code, 
inserting the Star-P® at the correct points to mark the large data set.

As an example, consider the case of FFTs performed on matrices that are near the memory 
capacity of the system MATLAB is running on.

>> n = 1.2*10^4;                  
>> a   = rand(n);                  
>> app = rand(n*p);                
>> tic; b   = fft( a); toc;        
Elapsed time is 92.685374 seconds.
>> tic; bpp = fft(app); toc;        
Elapsed time is 6.916634 seconds. 
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While you would expect Star-P® to be faster due to running on multiple processors, Star-P® is 
also benefiting from larger physical memory. The serial MATLAB execution is hampered by a 
lack of physical memory and hence runs inordinately slow. A recurring requirement for 
efficient Star-P® programs is keeping large datasets off the front end.

The code below shows what happens upon computing 2^26 random real numbers with 
decreasing vector sizes. When k=0, there is no loop, just one big vectorized command. On 
the other extreme, when k=25, the code loops 2^25 times computing a small vector of length 
2.

Notice that in the beginning, the vectorized code is not efficient. This turns out to be due to 
paging overhead, as the matrix exceeds the physical memory of the system on which 
MATLAB is running. Later on, the code is inefficient due to loop overhead. Star-P® 
overcomes the problem of insufficient memory by enabling you to run on larger-memory HPC 
systems. The simple command app = randn(2^26*p,1) parallelizes this computation.

Serial:

>> for k=0:25, tic; for i=1:2^k, a = randn(2^(26-k),1); end; toc; end;
Elapsed time is 1.865770 seconds.                                     
Elapsed time is 1.600310 seconds.                                     
Elapsed time is 1.581707 seconds.                                     
Elapsed time is 1.590823 seconds.                                     
Elapsed time is 1.597639 seconds.                                     
Elapsed time is 1.577038 seconds.                                     
Elapsed time is 1.579628 seconds.                                     
Elapsed time is 1.578954 seconds.                                     
Elapsed time is 1.581229 seconds.                                     
Elapsed time is 1.163945 seconds.                                     
Elapsed time is 1.059308 seconds.                                     
Elapsed time is 1.165907 seconds.                                     
Elapsed time is 1.079797 seconds.                                     
Elapsed time is 1.069463 seconds.                                     
Elapsed time is 1.090218 seconds.                                     
Elapsed time is 1.145205 seconds.                                     
Elapsed time is 1.235547 seconds.                                     
Elapsed time is 1.453363 seconds.                                     
Elapsed time is 1.883642 seconds.                                     
Elapsed time is 2.731986 seconds.                                     
Elapsed time is 4.467244 seconds.                                     
Elapsed time is 7.057231 seconds.                                     
Elapsed time is 13.076593 seconds.                                    
Elapsed time is 25.143928 seconds.                                    
Elapsed time is 44.867566 seconds.                                    
Elapsed time is 88.540178 seconds.                                    
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Solving Large Problems: Memory Issues

The ability of MATLAB and Star-P® to create and manipulate large matrices easily sometimes 
conflicts with the desire to run a problem that consumes a large percentage of the physical 
memory on the system in question. Many operators require a copy of the input, or sometimes 
temporary array(s) that are the same size as the input, and the memory consumed by those 
temporary arrays is not always obvious. Both MATLAB1 and Star-P® will run much more 
slowly when their working set exceeds the size of physical memory, though Star-P® has the 
advantage that the size of physical memory will be bigger.

If you are running into memory capacity issues, as evidenced by server exceptions being 
logged in the ~/.starp/log/latest/starpserver.log, then there may be one or a 
few places that are using the most memory. In those places, manually inserting clear 
statements for arrays no longer in use, allows the Star-P® garbage collector to free up as 
much memory as possible. 

As a means of determining where in your application you are requesting a larger amount of 
memory than is available for use, then you may consider enabling the 
STARP_SOFT_MEM_LIMITS environment variable in the env.sh file on the server, located in 
the <path/to/starp/install>/config directory, or placing this environment variable in 
the user’s .bashrc file, also on the server.  STARP_SOFT_MEM_LIMITS controls whether 
“soft-limits” will be enforced (= true ) or not (= false). By default, the value of 
STARP_SOFT_MEM_LIMITS is set to be false.   

When STARP_SOFT_MEM_LIMITS is set to true, server “out-of-memory” exceptions are 
returned to the client when one or more server processes exceed their “soft limit” for memory 
allocation and a subsequent large array allocation is attempted. The “soft-limits” approach 
utilizes UNIX “setrlimit” functionality to limit the user virtual memory to 1/Nth of the 
available physical memory on a system’s cache coherent domain that is running N Star-P® 
server processes. This artificial limit for memory allocation allows exception handling to be 
focused at specific points in the Star-P® server code and should allow users to code for these 
exceptions. This limit helps eliminate unexpected slow downs due to oversubscription of 
memory.

With STARP_SOFT_MEM_LIMITS set to false, an exception will be thrown on the server 
and an error message returned to the client, upon the first call to malloc(), the call for 
memory allocation in C, that exceeds the available memory on the server. If 
STARP_SOFT_MEM_LIMITS is set to true, then at the first call to malloc() where a 
request for memory exceeds this soft-limit, a null pointer is returned, and this event is 
recorded for later exception handling on the server. The soft-limit is then disabled, and the 
operation is repeated. If at this point, the call to malloc() does not exceed the free memory 
available on the system, then your application will continue. If the subsequent call to 

1. The MathWorks has a help page devoted to handling memory issues at 
http://www.mathworks.com/support/tech-notes/1100/1106.html.
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malloc() exceeds the memory available on the system, then an exception is thrown on the 
server, and an error message is returned to the client.

When examining the performance of your code using "soft-limits", you should also be aware 
of the Star-P® mallochooks setting on the server. mallochooks is set using ppsetoption. It 
provides a thin wrapper around the malloc() operation in C that records the user request in 
the case of a failed malloc(). This wrapper also provides that record at a later point to the 
Star-P® server for logging purposes. If you choose to set mallochooks to be off, then you 
are turning off Star-P®'s mechanism for tracking memory usage on the server. Any out of 
memory errors that occur with mallochooks turned off are subject to the memory limits and 
error handling provided by your server's operating system. 

Further user control for the actual memory “soft” limit is available via the 
STARP_MBYTES_PER_PEER environment variable. If defined, this environment variable will 
override the default limit which is calculated to be 1/Nth of the host’s actual physical memory. 
STARP_MBYTES_PER_PEER can be exceed the default value, but should be used with 
caution since it will allow oversubscription of memory, and could thereby cause application 
slow down due to swapping.

Tips for Task Parallel Code

Use of Structs and Cell Arrays

MATLAB codes allow for the use of structs and cell arrays as a convenient method of 
collecting and organizing related data sets. Within MATLAB, the contents of these containers 
can be any valid MATLAB data type, including matrices, strings, and other structures or cell 
arrays. Depending on the code being developed, these arrays may be gigantic arrays of 
structures or cells.

Star-P® currently allows the use of structures locally inside of functions called by “ppeval”. 
Structs and cell arrays on the client side continue to work within the MATLAB environment. 
You can assign distributed data to members of a struct or cell array, as well as manipulate 
distributed data that is a member of a struct or cell array. However, current versions of 
Star-P® lack the ability to pass entire structures or cell arrays from client to server. This 
means that you cannot pass a top-level struct or cell array name as an argument to 
“ppeval”, nor can you distribute an entire struct using ppback. Here are some examples:

%Legal Star-P® operations on structs

a.scalar = 57.36;
a.foo    = ppback([1:100]);
a.left   = rand(100*p,100);
a.right  = rand(100,100*p);
myprod   = a.left*a.right;
bar      = ppeval('somefunc', split(a.foo), split(a.left,1),split(a.right,2));
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%Illegal Star-P® operations -- can’t pass struct using top-level name
b.this   = rand(10,10);
b.that   = rand(10,10);
baz      = ppeval('someotherfunc',b);
bpp      = ppback(b);

MATLAB structs or cell arrays can be arbitrarily more complex than shown here (for example, 
structs containing cell arrays containing structs among other possibilities). As a general rule, 
if your data is held in a struct or cell array, and you need to pass a part of that data to the 
server, then pass only the structure members or contents of a cell array element that contain 
distributable matrix data or string variables.

When creating replacement variables for passing this data into or out of a ppeval call, give 
your replacement matrices names evocative of your original struct or cell array to help you 
keep track of what your code is doing.

Vectorize for Loops Inside of ppeval Calls

For similar reasons that vectorization is key to achieving optimal performance with data 
parallel codes, vectorization is also extremely important for good performance of task parallel 
codes. Each iteration of a function in task parallel takes place on an individual processor on 
the server and still involves the use of an interpreter. Consequently, the benefits of 
vectorization that can be achieved in serial MATLAB code are also available with task parallel 
MATLAB code with Star-P®.

The following example shows the effort needed and gains achieved by vectorization inside a 
“ppeval” call:

%Top.m -- Top level fcn invokes two different versions of sum to check speeds.

%Main function. Assume computation involves processing of 3D array.
n = 1000;
yarr = rand(3,n,8);
zarr = rand(3,n,8); 

tic;
x_looping = ppeval('fcn_looping',n,split(yarr,3),split(zarr,3));
toc

tic;
x_vectorized = ppeval('fcn_vectorized',n,split(yarr),split(zarr,3));
toc

function x = fcn_looping(n,y,z)
%===== Unvectorized version -- Bad! =====
for i = 1:n
if z(1,i) >= 0.5
x(i) = y(1,i)*z(1,i) + y(2,i)*z(2,i) + y(3,i)*z(3,i);
else
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x(i) = y(1,i)/z(1,i) + y(2,i)/z(2,i) + y(3,i)/z(3,i);
end
end

function x = fcn_vectorized(n,y,z)
%===== Vectorized version -- Good! =====
indx = z(1,:) >= 0.5;      %Replace if with a logical expression
x(indx) = sum(y(:,indx).*z(:,indx),1);
indx = indx == 0;   %use complement of indx for else case
x(indx) = sum(y(:,indx)./z(:,indx),1);

The performance gains achieved by this vectorization inside of a ppeval are shown in the 
following table as a function for the main loop index.

Performance Note on Iteration Timing

Each ppeval iteration has overhead cost associated with it on the order of 10s of 
microseconds. This means that if iterations of your for loop take less time than this 
overhead cost no performance gains will be achieved by using ppeval directly over the 
entire set of iterations. By blocking iterations within a function call, you can:

1. reduce the number of iterations performed by ppeval

2. increase the time per ppeval iteration

3. reduce the overall time necessary to perform all target function iterations.

To illustrate this point, let us consider a function foo contained in a file foo.m. Let us also 
assume that evaluating a single iteration of foo takes less than 10-20 microseconds. 

Performing N iterations of foo serially would take the following form:

% Performing all iterations serially
% on a function foo that takes two scalars
m = 6;
N = 2^m;
x = rand(N,1);
y = randn(N,1);
z = zeros(N,1);

Loop Iterator Looping 
Execution 
Time (sec)

Vectorized 
Execution 
Time (sec)

Speed-up 
Factor

100 0.798259 0.751317 1.06

1000 1.444807 0.815917 1.77

10000 9.126191 1.231624 7.41

100000 351.754691 5.797857 60
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for i=1:N
    z(i) = foo(x(i),y(i));
end
% file foo.m
function z = foo(x,y);
z = x+y;

Performing all N iterations in a single ppeval would then be:

% Performing all iterations in a single ppeval
xpp = ppback(x);
ypp = ppback(y);
zpp = ppeval('foo',xpp,ypp);

Now in the assumed case where foo takes less than 10-20 microseconds to execute, it is 
recommended that you rearrange the loop body to create a wrapper function, say 
foo_wrapper, that executes only a portion of your iterations serially. Then, this function 
foo_wrapper would be passed to ppeval. 

% from file foo_wrapper.m
function z = foo_wrapper(x,y,N);
z = zeros(N,1);
for i=1:N
    z(i) = foo(x(i),y(i));
end
%Transformed Serial operations
m = 6;
N = (2^m/np);
x = rand(N,np);
y = randn(N,np);
z = zeros(N,np);
for j = 1:np
    z(:,j) = foo_wrapper(x(:,j),y(:,j));
end
%Implementation in parallel with effective starp.ppeval operations
xpp = ppback(x);
ypp = ppback(y);
zpp = ppeval(foo_wrapper,xpp,ypp,N);
z = ppfront(zpp(:));

This example assumes that the total number of iterations desired for foo is a multiple of the 
number of processors. When this is not the case, the logic of how you choose to break up 
your for loops needs to be changed. In addition, the optimal method for determining the 
number of iterations that should be performed inside foo_wrapper, which is called by 
ppeval, is something that you will need to determine through experimentation based on the 
following quantities:

• The amount of time necessary to call a single iteration of foo.

• The total number of iterations of foo needed.

• The number of processors available.
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Using External Libraries

In addition to the functions available within MATLAB®, Star-P® allows for the integration of 
external functions for your own libraries or third party vendor libraries through the use of the 
ppinvoke, ppeval, and ppevalsplit, pploadpackage, and ppunloadpackage 
functions that are part of Star-P® SDK interface. More information on the Star-P® SDK can be 
found in the “Star-P® Software Development Kit Reference and Tutorial”. External functions 
can also be run in task parallel within ppeval through the use of the MATLAB system 
command. For more information on calling external functions using the system command, 
see "Calling Non-”M” Functions from within ppeval".

Although most Star-P® functions are insensitive to matrix distribution, many (or most) third 
party libraries are not. Consequently, if your MATLAB® program interfaces to external 
programs or libraries that are sensitive to distribution through the Star-P® SDK, then you 
must carefully consider how you distribute your matrices. In this situation you may ask, “how 
do I know whether to call the function with row distributed or column distributed input 
matrices?” Unless the third party programs explicitly state their desired distribution, then the 
answer is: experiment. Surround the function with “tic/toc”, “pptic/pptoc” and send it 
random matrices distributed in all ways possible. Then scale the matrix sizes up and see 
which distributions (if any) offer faster execution time, or which distributions break first when 
the matrix size becomes gigantic.

Integer Arithmetic in Star-P® Compared with MATLAB®

In MATLAB®, all operations on integer types “saturate.” This means values greater than 
intmax of that integer class are set to intmax and values below intmin of that integer 
class are set to intmin.

In Star-P® M, all operations on integers “overflow.” This behavior is more common in 
languages and environments that support integer operations such as C, C++, C#, Java and 
NumPy. This means when a value is greater than intmax for a particular integer class the 
result will cycle back from intmin of that class. Similarly, when a value is less than intmin 
of an integer class, the result will cycle starting from intmax.

Accuracy of Star-P® Routines

The underlying numerical libraries in Star-P® such as ScaLAPACK, FFTW and SPRNG are of 
high accuracy and comply with the IEEE standards. However, in many cases the results from 
Star-P® may differ from that reported by MATLAB® for a number of reasons:

1. In the most common case, the answers may simply be non-unique. For example, the 
eigenvalues from the single-return form of eig might be returned in a different order 
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from MATLAB® or the eigenvectors might be scaled differently. Similarly, the outputs 
from svd (singular value decomposition) and its derivatives such as null and orth, 
hess (reduction to the upper-Hessenberg form) and schur (reduction to the Schur 
form) are non-unique and therefore not guaranteed to match the corresponding outputs 
from MATLAB®. Instead, you must verify that the results satisfy the properties of the 
underlying decomposition. For instance, if you were to run 
[Upp,Spp,Vpp]=svd(App) for App being a ddense object, the outputs Upp, Spp, and 
Vpp are valid if Upp and Vpp are unitary and norm(Upp*Spp*Vpp - App) is small.

2. Another reason numerical results from Star-P® might not correspond to those from 
MATLAB has to do with the influence of small round-off errors. For example, it is 
well-known that even addition is not associative in the presence of rounding errors: the 
result of (a + b) + c can differ from a + (b + c).

3. When the underlying problem is ill-conditioned or singular, it is very likely that the 
results from Star-P® will not match MATLAB. For instance, when a matrix A is singular 
to working precision, inv(A) returns inf(size(A)) in MATLAB, but not in Star-P®. 
When such cases are encountered, Star-P® does its best to return a descriptive 
warning message.

4. Differences between MATLAB and Star-P® numerical results might arise for extremely 
large or extremely small input values.

5. Finally, differences between the numerical results in Star-P® and MATLAB might result 
from software issues.  If you suspect that the Star-P® result is incorrect, please contact 
us at support@interactivesupercomputing.com.

Configuring ppsetoption for High Performance

The following items should be considered when the performance of your Star-P® application 
is critical.

1. By default, each call to the Star-P® server causes an entry in a log file on the server 
system. Some performance benefits can be achieved by disabling logging in the server, 
via the following command at the MATLAB® prompt:

ppsetoption('log','off')

Through increasing the frequency of calls, by setting ppgcFreq to a number smaller 
than 30, the server can use less memory. This could be useful when executing server 
calls which allocate a lot of temporaries over a few server calls.

2. On SGI Altix systems, the Star-P® server will yield CPU usage after each command 
completes. Significantly improved performance is available at the cost of continuing to 
use CPU time in a loop even when Star-P® is idle. This increased performance can be 
obtained via the following command at the MATLAB prompt:
90 Star-P® Programming Guide for Use with MATLAB® Release 2.7



Performance Tuning and Monitoring
ppsetoption('YieldCPU','off')

3. By default, the Star-P® server maintains a count of how much memory it is consuming 
and how much memory is being used on the system. This enables it to more gracefully 
handle situations that arise when the server machine is running low on available 
memory. There is a minor performance cost associated with this functionality, because 
it requires a small amount of extra work to be done with each call to malloc() inside 
the server. This feature can be disabled, providing improved performance, via the 
following command:

ppsetoption('mallochooks','off')

Star-P® TPE provides the option of using various versions of Octave or compiled C codes as 
task parallel computational engines using the 'TaskParallelEngine' option as an 
argument in ppsetoption.

For information on using ppsetoption to change your task parallel engine, see "Choosing 
Your Task Parallel Engine (TPE)".

Performance Tuning and Monitoring

Diagnostics and Performance

Star-P® provides several diagnostic commands that help determine the following:

• Which variables are distributed, 

• How much time is spent on communication between the client and the server.

• How much time is spent on each function call inside the server. 

Each of these diagnostics can help identify bottlenecks in the code and improve 
performance. The diagnostic arguments are ppwhos, pptic/toc, ppeval_tic/toc, and 
ppprofile.

Client/Server Performance Monitoring

Coarse Timing with pptic and pptoc
Communication between the client and server can be measured by use of the pptic and 
pptoc commands, which are modeled after the MATLAB® tic and toc commands, but 
instead of providing wall-clock time between the two calls, they provide the number of 
client-server messages and bytes sent during the interval.

>> app = randn(1000*p);                                               
>> tic; bpp = fft(app), toc;                                          
bpp =                                                                 
        ddense object: 1000-by-1000p                                  
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Elapsed time is 0.022127 seconds.                                     
>> pptic; bpp = fft(app), pptoc;                                      
bpp =                                                                 
        ddense object: 1000-by-1000p                                  
Client/server communication report:                                   
  Sent by server: 1 messages, 7.200e+01 bytes                         
  Received by server: 1 messages, 8.800e+01 bytes                     
  Total communication time: 5.341e-05 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 1.802e-02s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 3.410e-02 seconds                                         

And of course the two can be combined to provide information about transfer rates. 

>> tic; pptic; bpp = fft(app), pptoc; toc;                            
bpp =                                                                 
        ddense object: 1000-by-1000p                                  
Client/server communication report:                                   
  Sent by server: 1 messages, 7.200e+01 bytes                         
  Received by server: 1 messages, 8.800e+01 bytes                     
  Total communication time: 5.198e-05 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 1.881e-02s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 3.241e-02 seconds                                         
Elapsed time is 0.032588 seconds.                                     

The pptic and pptoc commands can be used on various amounts of code, to focus on the 
source of a suspected performance problem involving communications between the client 
and the server. For instance, when you explicitly move data between the client and server via 
ppfront or ppback, you will expect to see a large number of bytes moved.

>> app = rand(1000*p);                                                  
>> pptic; ma = ppfront(app); pptoc;                                     
Client/server communication report:                                   
  Sent by server: 1 messages, 8.000e+06 bytes                         
  Received by server: 1 messages, 2.400e+01 bytes                     
  Total communication time: 7.060e-01 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 1.566e-02s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 7.415e-01 seconds                                         
>> ppwhos                                                             
Your variables are:                                                   
  Name       Size            Bytes        Class                       
  app        1000x1000p      8000000      ddense array                
  ma         1000x1000       8000000      double array                
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Grand total is 2000000 elements using 16000000 bytes                  
MATLAB has a total of 1000000 elements using 8000000 bytes            

Star-P® server has a total of 1000000 elements using 8000000 bytes     

But there might be places where implicit data movement occurs. For example, below we see 
an example of a distributed matrix being multiplied by a local, client-side matrix. In performing 
this operation, the matrix b must be shipped to the server to perform this operation.

>> app = rand(1000*p);                                                
>> b = rand(1000);                                                    
>> pptic; cpp = app * b; pptoc;                                       
Client/server communication report:                                   
  Sent by server: 2 messages, 1.480e+02 bytes                         
  Received by server: 2 messages, 8.000e+06 bytes                     
  Total communication time: 6.799e-01 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 1.403e-01s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 8.587e-01 seconds                                         

Other operations may produce different amounts of communication depending upon how 
they are called. For example, the single-return case of the find function may move only a 
few hundreds or thousands of bytes between the client and the server, but when calling the 
find operation on a distributed variable with three returns, the row indices, column indices and 
array values are all moved from the server to the client. Depending on the size of the 
distributed input, this could be a very large amount of data that is transferred.

An excessive number of client-server messages (as opposed to bytes transferred) can also 
hurt performance. For instance, the values of an array could be created element-by-element, 
as in the for loop below, or it could be created by a single array-level construct as below. 
The first construct calls the Star-P® server for each element of the array, meaning almost all 
the time will be spent communicating between the client and the server, rather than letting the 
server spend time working on its large data. 

>> app = rand(100*p,1);                                                 
>> bpp = rand(100*p,1);                                               
>> tic; pptic;                                                        
>> for i = 1:double(size(app,1)), cpp(i,1) = app(i,1)*2 + bpp(i,1)*7.4; end   
>> pptoc; toc;                                                        
Client/server communication report:                                   
  Sent by server: 200 messages, 8.800e+03 bytes                       
  Received by server: 200 messages, 1.281e+04 bytes                   
  Total communication time: 3.047e-03 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 5.492e-01s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 8.171e-01 seconds                                         
Elapsed time is 0.817286 seconds.                                     
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The second construct is drastically better because it allows the Star-P® server to be called 
only a few times to operate on the same amount of data. 

>> app = rand(100*p,1);                                               
>> bpp = rand(100*p,1);                                               
>> tic; pptic;                                                        
>> cpp(:,1) = app(:,1)*2 + bpp(:,1)*7.4;                              
>> pptoc; toc;                                                        
Client/server communication report:                                   
  Sent by server: 7 messages, 5.080e+02 bytes                         
  Received by server: 7 messages, 5.680e+02 bytes                     
  Total communication time: 1.159e-04 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 4.857e-02s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 9.490e-02 seconds                                         
Elapsed time is 0.095106 seconds.                                     

The execution of this script bears out the differences in messages sent/received, with the first 
method sending 200 times more messages than the second. What is even worse for the 
element-wise approach, the performance difference will grow as the size of the data grows. 

Summary and Per-Server-Call Timings with ppprofile
The different subfunctions of the ppprofile command can be combined to give you lots of 
information about where the time is being spent in your Star-P® program. There are different 
types of information that are available.

Perhaps the most common usage of ppprofile is to get a report on a section of code, as 
follows.

>> app = rand(1000*p);                                                
>> ppprofile on                                                       
>> doffts(app)                                                        
>> ppprofile report                                                   
function                 calls      time  avg time    %calls     %time
ppbase_setoption             1  0.079922  0.079922   11.1111   45.9766
starp_fft1                   2  0.046222  0.023111   22.2222     26.59
ppdense_max                  2  0.016304  0.008152   22.2222    9.3792
ppdense_unary_op             1   0.01081   0.01081   11.1111    6.2186
ppdense_binary_op            1  0.010652  0.010652   11.1111    6.1278
ppdense_viewelement          2  0.009922  0.004961   22.2222    5.7078
Total                        9   0.17383  0.019315                    

The report prints out all server functions that are used between the calls to ppprofile on 
and ppprofile report, sorted by the percentage of the execution time spent in that 
function. For this example, it shows you that 34% of the time is spent executing in the server 
routine ppfftw_fft, which calls the FFT routine in the FFTW parallel library. This report 
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also tells you how many calls were made to each server routine, and the average time per 
call.

Information from this report can be used to identify routines that your program is calling more 
often than necessary, or that are not yet implemented optimally. An example of the former is 
given below, by a script which does a matrix multiplication in a non-vectorized manner, 
compared to a vectorized routine. The script has the following contents:

>> type domxmp                                             
function c = domxmp(a,b)                                   
%  Do matrix multiply by various methods (bad to good perf)
%                                                          
%  First, do it in an unvectorized style.                  
[ma, na] = size(a);                                        
[mb, nb] = size(b);                                        
ppprofile clear, ppprofile on;                             
tic;                                                       
c = zeros(ma,nb)                                           
for i = 1:double(ma)                                       
  for j = 1:double(nb)                                     
    c(i,j) = dot(a(i,:),b(:,j));                           
  end                                                      
end                                                        
fprintf('MxM via dot takes ');                             
toc;                                                       
ppprofile report                                           
%  Second, do it in a vectorized style.                    
ppprofile clear, ppprofile on;                             
tic;                                                       
c = a*b;                                                   
fprintf('\nMxM via dgemm takes ');                         
toc;                                                       
ppprofile report                                           

With two input arrays sized as 20-by-20p, you get the following output: 

>> app = rand(20*p);                                                    
>> bpp = rand(20*p);                                                    
>> cpp = domxmp(app,bpp);                                             
cpp =                                                                 
        ddense object: 20-by-20p                                      
MxM via dot takes Elapsed time is 13.243921 seconds.                  
function                 calls      time  avg time    %calls     %time
ppdense_setelement         400    3.1333 0.0078333   24.9688   37.7747
ppdense_subsref_col        400    1.7981 0.0044952   24.9688    21.677
ppdense_subsref_row        400    1.7178 0.0042944   24.9688    20.709
ppdense_dotv               400    1.6218 0.0040545   24.9688   19.5519
ppbase_setoption             1  0.019089  0.019089  0.062422   0.23013
ppdense_zeros                1  0.004753  0.004753  0.062422  0.057301
Total                     1602    8.2948 0.0051778                    
MxM via dgemm takes Elapsed time is 0.007292 seconds.                 
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function                 calls      time  avg time    %calls     %time
pppblas_gemm                 1  0.003829  0.003829        50   54.4588
ppbase_setoption             1  0.003202  0.003202        50   45.5412
Total                        2  0.007031 0.0035155                   

You can see that the first report requires over 2,000 server calls, while the second requires 
only one. This accounts for the drastic performance distance between the two styles of 
accomplishing this same computational task.

If you want to delve more deeply and understand the sequential order of system calls, or get 
more detailed info about each server call, you can use the ppprofile display option.

>> app = rand(1000*p);                         
>> ppprofile off                               
>> ppprofile on, ppprofile display             
>> doffts(app)                                 
starp_fft1  time=0.019604                      
starp_fft1  time=0.014379                      
ppdense_binary_op  time=0.011343               
ppdense_unary_op  time=0.01186                 
ppdense_max  time=0.009945                     
ppdense_max  ppdense_viewelement  time=0.003043
ppdense_viewelement  time=0.006743             
time=0.00759                                   
>> ppprofile off                               

With this option, the information comes out interspersed with the usual MATLAB console 
output, so you can see which MATLAB or Star-P® commands are invoking which server calls. 
This can help you identify situations where Star-P® is doing something you didn’t expect, and 
possibly creating a performance issue.

Another level of information is available with the ppprofile on -detail full option 
coupled with the ppprofile display option.

>> ppprofile off 
>> ppprofile on -detail full 
>> ppprofile display 
>> doffts
echo on
bpp = fft(app);
ppfftw_fft          time=0.11616 stime=0        chdist=0
ppbase_gc_many      time=3.1397  stime=0.078125 chdist=0
cpp = ifft(bpp);
ppfftw_fft          time=0.33294 stime=0.10938  chdist=0
diff = max(max(abs(cpp-app)))
ppdense_elminus     time=0.16202 stime=0.046875 chdist=0
ppdense_abs         time=0.20006 stime=0.09375  chdist=0
ppdense_max         time=0.12719 stime=0.015625 chdist=0
ppbase_removeMatrix time=0.11105 stime=0        chdist=0
ppdense_max         time=0.12176 stime=0        chdist=2
ppdense_viewelement time=0.11217 stime=0        chdist=0
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ppbase_gc_many      time=0.1127  stime=0        chdist=0
ppdense_viewelement time=0.11225 stime=0        chdist=0
diff = 
7.7963e-16

As you can see, the per-server-call information now includes not only the time spent 
executing on the server (“stime”) but also the number of times that the distribution of an 
object was changed in the execution of a function (“chdist”). Changes of distribution are 
necessary to provide good usability (think of the instance where you might do element-wise 
addition on 2 arrays, one of which is row-distributed and one of which is column-distributed), 
but changing the distribution also involves communication among the processors of the 
Star-P® server, which can be a bottleneck if done too often. In this example, the max function 
is doing 2 changes of distribution. 

ppeval_tic/toc: 

Star-P® also provides a set of timer functions specific to the ppeval command: 
ppeval_tic/ppeval_toc. They provide information on the complete ppeval process by 
breaking down the time spent in each step necessary to perform a ppeval call: 

>> ppeval_tic();                        
>> ypp = ppeval('inv',rand(10,10,1000*p));
>> ppeval_toc(0)                        
ans =                                   
             TotalCalls: 1              
             ServerInit: 6.1989e-06     
           ServerUnpack: 5.0068e-06     
      ServerFunctionGen: 0.0019         
        ServerCallSetup: 1.9908e-04     
       ServerOctaveExec: 0.0493         
      ServerDataCollect: 2.0599e-04     
        ServerTotalTime: 0.0516         
          ClientArgScan: 0.0050         
           ClientDepFun: 0.0028         
            ClientEmode: 0.0549         
     ClientReturnValues: 0.0096         
        ClientTotalTime: 0.0723         
       TPELogFileLength: 84             
        InputElementsPP: [12503 0]      
       OutputElementsPP: [12500 0]      
           TPEInnerExec: 0              
           TPEOuterExec: 0.0478         
          TPESliceCount: 125            

ppeval_tic/toc is useful to determine how much time is spent on actual calculation 
(ServerOctaveExec) and how much on server (ServerTotalTime – 
ServerTPEExec) and client (ClientTotalTime) overhead. The argument to 
ppeval_toc determines is the maximum time of all processors (0), the minimum time of all 
processors (1), or the mean time of all processors (2) is returned.
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Maximizing Performance

Maximizing performance of Star-P® breaks down to the following guidelines:
1. minimize client/server communication, 
2. keep data movement between the client and server to a minimum, and 
3. keep distributions of server variables aligned. 

The first point is most important for data parallel computation and can be achieved by 
vectorizing your code, meaning, that instead of using looping and control structures, you use 
higher level functions to perform your calculations. Vectorization takes control of the 
execution away from MATLAB (e.g., MATLAB is no longer executing the for loop line by 
line) and hands it over to optimized parallel libraries on the server. Not only will vectorized 
code run faster with Star-P®, it will also run faster with MATLAB. 

The second point simply reflects the fact that transferring data from the client to the server is 
the slowest link in the Star-P® system. Any operation that involves a distributed variable and 
a normal MATLAB variable will be executed on the server, and hence, includes transferring 
the MATLAB variable to the server so that the server has access to it. When the MATLAB 
variables are scalars, this does not impact the execution time, but when the variables 
become large it does impact the time it takes to perform the operation. 

Note that when combining a distributed and MATLAB variable inside a loop, the MATLAB 
variable will be sent over to the server for each iteration of the loop. 

The third point reflects the fact that changes in the distribution type, say from row to column 
distributed, costs a small amount of time. This time is a function of the interconnect between 
the processors and will be larger for slower interconnects. In general, avoiding distribution 
changes is straightforward and is easily achieved by aligning the distribution types of all 
variables, i.e. all row distributed or all column distributed.

Maintaining Awareness of Communication Dependencies

Communication between the Star-P® Client and Server

Distributed objects in Star-P® reside on the server system, which is usually a different 
physical machine from the system where the MATLAB client is running. Thus, whenever data 
is moved between the client and the server, it involves interprocessor communication, usually 
across a typical TCP/IP network (Gigabit Ethernet, for instance). While this connection 
enables the power of the Star-P® server, excessive data transfer between the client and 
server can cause performance degradation, and thus the default behavior for Star-P® is to 
leave large data on the server. One typical programming style is to move any needed data to 
the server at the beginning of the program (via ppback, ppload, etc.), operate on it 
repeatedly on the server, then save any necessary results at the end of the program (via 
ppfront, ppsave, etc.).
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However, there are times when you want to move the data between the client and the server. 
This communication can be explicit.

>> load imagedata a                                               
>> app = ppback(a);                                               
>> bpp = app.*app;                                                
>> b = ppfront(bpp);                                              
>> ppwhos                                                         
Your variables are:                                               
  Name       Size            Bytes        Class                   
  a          1000x1000       8000000      double array            
  app        1000x1000p      8000000      ddense array            
  b          1000x1000       8000000      double array            
  bpp        1000x1000p      8000000      ddense array            
Grand total is 4000000 elements using 32000000 bytes              
MATLAB has a total of 2000000 elements using 16000000 bytes       

Star-P® server has a total of 2000000 elements using 16000000 bytes

The load command loads data from a file into MATLAB variable(s). The ppback command 
moves the data from the client working space to the Star-P® working space, in this case as a 
ddense array. Similarly, the ppfront command moves data from the Star-P® server working 
space back to the MATLAB client working space.

>> bpp = rand(1000*p);                                           
>> d = max(max(bpp));                                            
>> e = norm(bpp);                                                
>> ppwhos                                                        
Your variables are:                                              
  Name       Size            Bytes        Class                  
  bpp        1000x1000p      8000000      ddense array           
  d          1x1             8            double array           
  e          1x1             8            double array           
Grand total is 1000002 elements using 8000016 bytes              
MATLAB has a total of 2 elements using 16 bytes                  

Star-P® server has a total of 1000000 elements using 8000000 bytes

When accessing data from disk, it may be faster to load it directly as distributed array(s) 
rather than loading it into the client and then moving it via ppback (and similarly to save it 
directly as distributed arrays). The ppload/ppsave commands are the distributed versions 
of the load/save commands. For information on ppload and ppsave, see "The ppload 
and ppsave Star-P® Commands".

Implicit Communication

The communication between the client and the server can also be implicit. The most frequent 
cases of this communication pattern are the call(s) that are made to the Star-P® server for 
operations on distributed data. While attention has been paid to optimizing these calls, 
making too many of them will slow down your program. The best approach to minimizing the 
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 99



Performance Tuning and Monitoring

          
           
number of calls is to operate on whole arrays and minimize the use of control structures such 
as for and while, with operators that match what you want to achieve. 

Another type of implicit communication is done via reduction operations, which reduce the 
dimensionality of arrays, often to a single data element, or other operators which produce 
only a scalar.

>> d = max(max(bpp));
>> e = norm(bpp);
>> ppwhos
Your variables are:
   Name       Size           Bytes      Class
   bpp        100x100p       80000      ddense array
   d          1x1            8          double array
   e          1x1            8          double array

One of the motivations behind the design of Star-P® was to allow larger problems to be 
tackled than was possible on a single-processor MATLAB session. Because these problems 
often involve large data (i.e., too big to fit on the MATLAB client), and because of the 
possibility of performance issues mentioned above, Star-P®’s default behavior is to avoid 
moving data between the client and the server. Indeed, given the memory sizes of parallel 
servers compared to client systems (usually desktops or laptops), in general it will be 
impractical to move large arrays from the server to the client. The exception to this rule arises 
when operations on the server result in scalar output, in which case the scalar value will 
automatically be brought to the client.

Because of this bias against unnecessary client-server communication, some Star-P® 
behavior is different from MATLAB. For instance, if a command ends without a final 
semicolon, MATLAB will print out the resulting array. 

>> f = rand(8,8)                                                                 
f =                                                                             
    0.4838    0.1520    0.1996    0.7267    0.4563    0.7669    0.3624    0.7185    
    0.5923    0.5584    0.1937    0.4047    0.2911    0.2298    0.2460    0.8987    
    0.7036    0.2819    0.4815    0.3219    0.0787    0.4983    0.9179    0.8907    
    0.8828    0.1345    0.1551    0.3135    0.4714    0.7376    0.1811    0.8055    
    0.1802    0.1512    0.2509    0.2147    0.9806    0.0915    0.6026    0.8420    
    0.6950    0.4017    0.5268    0.0104    0.9427    0.0030    0.1507    0.3435    
    0.9811    0.0213    0.4433    0.7595    0.8324    0.7831    0.4493    0.2497    
    0.1848    0.7306    0.0034    0.5078    0.7174    0.1684    0.6500    0.8098    
    0.0904    0.5250    0.2795    0.5770    0.5986    0.0795    0.3651    0.4867    
    0.4757    0.5727    0.9461    0.6291    0.4177    0.8044    0.2065    0.3597    

While this makes good sense for small data sizes, printing out the data sizes possible with 
Star-P® distributed objects, which often contain hundreds of millions to trillions of elements, 
would not be useful. Thus the Star-P® behavior for a command lacking a trailing semicolon is 
to print out the size of the resulting object. 

>> fpp = rand(8*p,8)                                    
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fpp =                                                   
        ddense object: 8p-by-8                          

If you want to see the contents of an array, or a portion of an array, you can display a single 
element in the obvious way, as follows:

>> fpp(1,4)                                             
ans =                                                   
    0.2433                                             

Alternately, you can move a portion of the array to the client:

>> fsub = ppfront(fpp(1:4,:));                          
>> ppwhos                                               
Your variables are:
  Name       Size      Bytes    Class
  ans        1x1       8        double array
  fpp        8px8      512      ddense array
  fsub       4x8       256      double array

Grand total is 97 elements using 776 bytes
MATLAB has a total of 33 elements using 264 bytes
Star-P server has a total of 64 elements using 512 bytes

Note: When you call ppfront and leave off the final semicolon, MATLAB will print out 
the whole contents of the array.

Note: Communication can happen implicitly as described in "Mixing Local and 
Distributed Data".

Communication Among the Processors in the Parallel Server

During operations on the parallel server, communication among processors can happen for a 
variety of reasons. Users who are focused on fast application development time can probably 
ignore distribution and communication of data, but those wanting the best performance will 
want to pay attention to them.

Some operations can be accomplished with no interprocessor communication on the server. 
For instance, if two arrays are created with the same layout (see details of layouts in "Types 
of Distributions"), element-wise operators can be done with no communication, as shown in 
the following example.

>> app = rand(100*p,100);                                     
>> bpp = rand(100*p,100);                                     
>> cpp = app +  bpp;                                          
>> dpp = app .* bpp;                                          
>> ppwhos                                                     
Your variables are:                                           
  Name       Size          Bytes      Class                   
  app        100px100      80000      ddense array            
  bpp        100px100      80000      ddense array            
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  cpp        100px100      80000      ddense array            
  dpp        100px100      80000      ddense array            
Grand total is 40000 elements using 320000 bytes              
MATLAB has a total of 0 elements using 0 bytes                

Star-P® server has a total of 40000 elements using 320000 bytes

These element-wise operators operate on just one element from each array, and if those 
elements happen to be on the same processor, no communication occurs. If the elements 
happen not to be on the same processor, the element-wise operators can cause 
communication. In the example below, app and epp are distributed differently, so internally 
Star-P® redistributes epp to the same distribution as app before doing the element-wise 
operations.

>> app = rand(100*p,100);                                     
>> epp = rand(100,100*p);                                     
>> fpp = app .* epp;                                          
>> ppwhos                                                     
Your variables are:                                           
  Name       Size          Bytes      Class                   
  app        100px100      80000      ddense array            
  epp        100x100p      80000      ddense array            
  fpp        100px100      80000      ddense array            
Grand total is 30000 elements using 240000 bytes              
MATLAB has a total of 0 elements using 0 bytes                

Star-P® server has a total of 30000 elements using 240000 bytes

Often redistribution cannot be avoided, but for arrays which will be operated on together, it is 
usually best to give them the same distribution.

Any operator that rearranges data (for example, sort, transpose, reshape, permute, 
horzcat, circshift, extraction of a submatrix) will typically involve communication on a 
parallel system. Other operators by definition include communication when executed on 
distributed arrays. For example, multiplication of two matrices requires, for each row and 
column, multiplication of each element of the row by the corresponding element of the 
column and then taking the summation of those results. Similarly, a multi-dimensional FFT is 
often implemented by executing the FFT in one dimension, transposing the data, and then 
executing the FFT in another dimension. Some operators require communication, in the 
general case, because of the layout of data in Star-P®. For instance, the find operator returns 
a distributed dense array (column vector) of the nonzero elements in a distributed array. 
Column vectors in Star-P® contain an equal number of elements per processor for as many 
processors as can be fully filled, with any remainder in the high-numbered processors. Thus 
the find operator must take the result values and densely pack them into the result array. In 
general, this requires interprocessor communication. For the same reason, creating a 
submatrix by indexing into a distributed array also requires communication.

As a programmer, you may want to be aware of the communication implicit in various 
operators, but only in rare cases would the communication patterns of a well-vectorized code 
make you choose one operator over another. The performance cost of interprocessor 
communication will be heavily application dependent, and also dependent on the strength of 
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the interconnect of the parallel server. For high communication problems, a tightly integrated 
system, such as an SGI Altix system, will provide the best performance.

Enhanced Performance Profiling in Star-P®

If you are using Star-P®, it is probably because you want to achieve maximum performance 
from your MATLAB program. That is, you are interested in making your program run as 
quickly as possible, while still returning correct results. Since Star-P® is a client/server 
program, correctly distributing your processing tasks between client and server is 
instrumental in obtaining best performance. Also, calling the right functions to achieve your 
goals is important to obtaining good run times. 

Knowing which functions are invoked, where they are running, how many times they are 
called, and how long they run before completion is information you can use while optimizing 
your program for best performance. Therefore, Star-P® provides several profiling facilities to 
help you wring maximum performance out of your program. These facilities include: 

• MATLAB's profile and Star-P®'s ppprofile, which provide run-time profiling of 
your program's execution. This information includes statistics about execution time, 
number and name of sub-function calls, and other execution tracing information. 
“Profile” tracks program activity on the client, and “ppprofile” tracks activity on the 
server. 

• MATLAB's tic/toc and Star-P®'s pptic/pptoc, which report the time elapsed 
on the client (tic/to) and the server (pptic/pptoc) between the tic/pptic 
call and the toc/pptoc call. 

• Star-P®'s unique ppperf function. ppperf provides fine-grained profiling of 
compute activity on both the client and the server together. It pays close attention 
to the time required to perform computational tasks, and it also tracks 
communication between client and server over the network. The vision behind 
ppperf is to provide you a top-level view of what your program is doing as it runs 
your calculation. Using the information provided by ppperf, you can identify 
program choke points, isolate excessive client/server communication, see what 
functions are invoked on both client and server, and determine how long each 
function takes to finish. This information can be invaluable when debugging or 
optimizing a Star-P® application. 

The rest of this section describes the use of ppperf in investigating your code. 

Using ppperf

Usage of Star-P®'s profiling tool is loosely based upon MATLAB's profile functionality. If 
you are used to code profiling using MATLAB's profile, then Star-P®'s ppperf will feel 
comfortable to you. 
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To use ppperf, you should first have a mental model of what ppperf is doing. Figure 5-1 is 
a simplified diagram showing the major software components at work when you execute a 
function called myfunc on the parallel supercomputer. You, the user, interacts with MATLAB 
on your local PC. When you execute myfunc:

• MATLAB passes control to the Star-P® client software, which in turn sends it to the 
Star-P® server software, which evaluates your function using the appropriate 
numerical library. 

• Then, the Star-P® server passes the result to the Star-P® client, which sends it up 
to MATLAB, which displays the result to you in your MATLAB session. Meanwhile, 
performance data is recorded at several points within the system.

Figure 5-1  Major Software Components At Work

Figure 5-1 is a conceptual picture of what happens when you invoke myfunc() in the 
MATLAB client. Star-P® software passes the function call down to the appropriate numerical 
library on the server, and passes the returned results back to the MATLAB session (thick 
dotted black line in Figure 5-1). 
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Three different sets of performance data are gathered: One set in MATLAB on the client, and 
two sets in the Star-P® server (red arrows). Later, when the user types “ppperf report”, 
the performance data is gathered into a table living on the client (blue arrows).  

With this picture in mind, performance monitoring occurs in three places: 
1. MATLAB records performance data on the client PC. It makes this data available to you 

using its profile facility. This data is also accessible using ppperf with the appropriate 
flag set. 

2. Star-P® records performance data related to the sub-functions called by your function. 
Much of this data is related to the calling history of sub-functions you invoke. This data is 
available to you using Star-P®'s ppprofile facility, as well as using ppperf with the 
appropriate flag set. 

3. Star-P® also keeps timers and counters related to supercomputer resource utilization. 
This data is uniquely accessible using Star-P®'s ppperf feature. 

Gathering these three categories of performance parameters is suggested in the figure by the 
red arrows, which indicate collection of performance data into the associated data structures 
and storage tables. 

After your program has run, you may request a report showing all recorded performance data 
by issuing the command ppperf report. This command brings all the performance data 
scattered around the client and server into a table living on the client. This is suggested by 
the blue arrows shown in the figure. Once the data is gathered into a table on the client, the 
table is then displayed to the user. 

Another important picture to visualize when profiling your code is to understand how the client 
and the server interact. Under Star-P®, the client and the server process your computation 
using a “ping-pong” mode. That is, while Star-P® is performing your calculation, the client 
does some work while the server sits idle, and then the server does some work while the 
client is idle, then the client does work and the server sits idle, and so on. Each time a work 
hand-off occurs, a burst of network activity occurs as data is exchanged between client and 
server. Keep this work flow in mind as you examine the data generated by ppperf. 

Using ppperf is simple. First, you initiate performance monitoring. This means that you tell 
Star-P® to clear any old performance data stored on the server, and start the performance 
counters and timers afresh. Next you run your program. When your program is done, you 
fetch the performance data from the server and display it. Finally, assuming you are done 
with performance monitoring, you turn off the monitoring facility. Here's an example sequence 
of commands you could enter in your Star-P® session: 

ppperf o2                         % Initiate performance monitoring 
baz  = my_function1(foo, bar);    % Function running on server 
woof = my_function2(foo, baz);    % Another function running on server 
my_function3(woof);               % A third function running on server 
ppperf report                     % Get and display performance data 
ppperf clear                      % Clear statistics table
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ppperf will accumulate performance statistics until you turn it off using one of ppperf 
report, ppperf off, or ppperf clear. The distinction between these commands lies in 
whether they erase the statistics table. As a general rule, ppperf's subcommands will 
behave similarly to the analogous subcommands of MATLAB's profile function.  

Gathering performance statistics

• ppperf on | o1 
ppperf o2 | o3 <seconds> - This command starts the performance 
monitoring process and initializes the results table. It is always the first command 
issued when you want to profile your code's execution. You may select one of 
three levels of profiling. The profiling level (1, 2, 3) is prefixed with the lower case 
letter 'o'. Consult Figure 5-1 to see the three different types of profiling data 
measured, and where they are logged. The different profiling levels are invoked 
using these flags:

• on - This flag is a synonym for o1. That is, ppperf on is equivalent to ppperf 
o1.

• o1 - Returns the data stored in the performance counters and timers on the 
server. 

• o2 - Returns the data in the server's performance counters and timers. It also 
returns the server-side function call history data typically returned by 
ppprofile. 

• o3 - Returns the data stored in the server's performance counters and timers. It 
also returns the server-side function call history data. Finally, it also returns the 
client-side profiling data which is gathered by MATLAB's profile function. 

• After the profiling level, you may optionally specify the update interval (in seconds) 
for statistics gathering (denoted by <seconds> above). The update interval must 
be an integer. The update interval is optional; if you don't specify this parameter, 
update interval sampling is not done. 

• ppperf report - This command stops performance statistics gathering on the 
server, brings the performance data to the client, and displays them. Use this 
command when you are done gathering statistics on your program and want to see 
the results. 

• ppperf clear - Turns off profiling and clears the results table. 

• ppperf off - Turns off the performance monitoring process, but leaves the results 
table alone. Use this command if you want to perform some work without gathering 
statistics. 

Displaying performance statistics

Star-P®'s ppperf facility supports two methods to display performance statistics: textual and 
graphical. Text reports are covered in this section and graphical output is covered in "Using 
ppperf's graphical mode". 
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To see profiling results:

• First turn on profiling using ppperf on, then run your program. 

• Then issue the command ppperf report, or ppperf report detail. 

• ppperf report will emit a long text report detailing the resources used by your 
program while it ran. 

• ppperf report detail will return a more extensive report. Specifically, 
ppperf report detail will display run statistics gathered on each compute 
node on the server (ppperf report displays statistics for the server as a 
whole). 

Here's an example ppperf run. First, we'll look at the program being profiled. It is called 
SumDifferences_loop.m. It calculates the RMS deviation from one point to the next in a 
1000 element random vector. 

% This example will calculate the RMS point-to-point 
% deviation of one random point to the next.         

xpp = rand(1000*p, 1);
n=length(xpp)-1;
tic
   dx_sum = 0;
   for i = 1:n
      dx = xpp(i+1)-xpp(i);
      dx_sum = dx_sum + dx^2;
   end
   dx_sum = sqrt(dx_sum);
toc
fprintf('dx_sum = %f\n', dx_sum);

This is a particularly bad program for Star-P®, since it involves using a for loop to perform a 
simple sum. It is easy to create a vectorized version of this program whose run time is 
perhaps 100 times faster. Nonetheless, this code provides a very interesting example for 
ppperf profiling since it demonstrates many of the things you can learn by running ppperf 
on your code. 

Here's the ppperf run: 

>> ppperf on
Start MATLAB/Star-P® Performance Metrics
>> SumDifferences_loop
Elapsed time is 12.254049 seconds.
dx_sum = 12.304663
>> ppperf report
=============================================================================

MATLAB/Star-P® Performance Metrics
Date:    17-May-2007 18:11:01
Client:  my_client_machine_address.com
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Server:  my_server
Elapsed: 32 seconds
-----------------------------------------------------------------------------

Performance Time Measurement
-----------------------------------------------------------------------------
  count        min        max       mean       time  metric
   2001     0.0029     5.5610     0.0082    16.4061  Client Time
   2001     0.0003     0.0061     0.0004     0.8222  Network Time
   2001     0.0000     0.0003     0.0000     0.0432  Client2Server
   2001     0.0000     0.0001     0.0000     0.0334  Server2Client
   2001     0.0073     0.0226     0.0074    14.7372  Server Time
   2001     0.0073     0.0226     0.0074    14.4858  Command
   2001     0.0000     0.0004     0.0001     0.2128  Command Execute
   1998     0.0000     0.0001     0.0000     0.0384  Command Execute Move
   2001     0.0000     0.0000     0.0000     0.0176  Command EStatus
      1     0.0001     0.0001     0.0001     0.0001  Command Execute Create
      3     0.0000     0.0000     0.0000     0.0000  Command Execute Misc

Performance Process Measurement
-----------------------------------------------------------------------------
                                                     value   metric
                                                   34.0630   Starp Real Time
                                                   36.4111   Starp Sys Time
                                                   78.6709   Starp User Time

Star-P® Profiling
-----------------------------------------------------------------------------
function                 calls      time  avg time    %calls     %time
ppdense_viewelement       1998   16.9636 0.0083551   99.8501   99.6233
ppbase_setoption             1  0.030958  0.030958  0.049975   0.18475
ppdense_rand                 1  0.023654  0.023654  0.049975   0.14116
ppbase_profile_onoff         1  0.008517  0.008517  0.049975  0.050827
Total                     2001   16.7567 0.0083742
>>

Interpretation of ppperf's output

Now that we've seen the output generated by a typical ppperf run, the question is: What 
does all that data mean? Let's look at each section generated by ppperf. 

The preamble

The preamble provides basic information about the performance run just completed. Here's 
the preamble from the above run: 

MATLAB/Star-P® Performance Metrics
Date:    17-May-2007 18:11:01
Client:  my_client_machine_address.com
Server:  my_server
Elapsed: 32 seconds
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The preamble provides the following information: 

• The date of the performance run, 

• the names of the client and server computers, and 

• the total elapsed time. 

If you are running ppperf interactively (for example, typing each command into the Star-P® 
prompt), then the elapsed time is the time duration between when you typed in ppperf o2 
and when you typed in ppperf report. If you wait for 20 seconds before running your 
function, the additional 20 seconds of idle time will be incorporated into the reported elapsed 
time. 

Performance Time Measurement

This section provides information about how the two computers (client and server) spent their 
time on your calculation. 

Remember that Star-P® operates in a ping-pong mode. The client does some work while the 
server idles, then the server does some work while the client idles, and so on, until your 
computation is done. 

Also, every time there is a hand-off of work between client and server, a burst of network 
activity occurs. The performance time measurement shows you how many times each 
component was active in your program, the min, max, and mean time it was active (in 
seconds), and the total time required by each component to do its job. Here's the 
“Performance Time Measurement” section of the report shown earlier: 

Performance Time Measurement
-----------------------------------------------------------------------------
  count        min        max       mean       time  metric
   2001     0.0029     5.5610     0.0082    16.4061  Client Time
   2001     0.0003     0.0061     0.0004     0.8222  Network Time
   2001     0.0000     0.0003     0.0000     0.0432  Client2Server
   2001     0.0000     0.0001     0.0000     0.0334  Server2Client
   2001     0.0073     0.0226     0.0074    14.7372  Server Time
   2001     0.0073     0.0226     0.0074    14.4858  Command
   2001     0.0000     0.0004     0.0001     0.2128  Command Execute
   1998     0.0000     0.0001     0.0000     0.0384  Command Execute Move
   2001     0.0000     0.0000     0.0000     0.0176  Command EStatus
      1     0.0001     0.0001     0.0001     0.0001  Command Execute Create
      3     0.0000     0.0000     0.0000     0.0000  Command Execute Misc

As you can see, the client performed a chunk of work 2001 times. Also, it consumed by far 
the majority of the elapsed time. Since the program SumDifferences_loop.m involves a 
for loop iterated 1000 times, it appears that the client performed two tasks for each loop 
iteration -- plus one task at the end of the loop -- giving rise to the activity count of 2001. 
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The network was active 2001 times, which reflects the fact that upon each iteration of the for 
loop the client was required to perform two tasks. Also, the large amount of time 
communicating on the network signals that this program spent too much time 
communicating.

Finally, the server was active 2001 times, but each burst of activity lasted at most a few 
milliseconds. This indicates that the server was very underutilized by this program. Since the 
whole point of using Star-P® is to effectively harness and use the power of the 
supercomputer server, this program, SumDifferences_loop.m, clearly does an inefficient 
job of exploiting the potential of Star-P®. Of course, this is expected, since the program is 
essentially a big for loop, which is known to be a slow and inefficient way to implement this 
computation. Later, we'll look at a vectorized version of the same computation. 

Performance Process Measurement

One of the most interesting things you can learn from ppperf is the amount of time spent in 
the various software subcomponents (daemons or libraries) running on the server. The 
“process measurement” results provide this information. 

To visualize the meaning of the “process measurement” data, imagine that the server runs a 
Star-P® server daemon. The daemon manages a set of numerical libraries that are used to 
evaluate your function. This is shown schematically in Figure 5-1.

When a server call is made, the Star-P® server daemon must spend some time figuring out 
how to handle your function call. Having done that, it then hands your data to the appropriate 
function in one of the numerical libraries. Once the function is done executing, it hands the 
returned data back to the Star-P® server daemon, which in turn sends it to the client. 
Meanwhile, performance timers and counters are running, measuring the amount of time 
spent in the Star-P® server daemon, as well as the time spent executing the library function. 

Here's a report returned in the default mode, for example, ppperf report: 

Performance Process Measurement
-----------------------------------------------------------------------------
                                                     value   metric
                                                   34.0630   Starp Real Time
                                                   36.4111   Starp Sys Time
                                                   78.6709   Starp User Time

There are several things to note here: 

• In this example the only process that ran was the “Starp” process. The “Starp” 
process is the Star-P® server daemon, which manages your computation on the 
server side. Depending upon the details of your calculation -- and specifically which 
numerical engines it invokes on the server -- you may see other processes listed in 
this section alongside “Starp”. Rerun the example to get Octave times.

• Three times are listed for each process: 
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1. Real Time - The wall clock time spent by this process during the execution of your 
function. This can be greater or less than User Time depending on the application.

2. Sys Time - This is the CPU time spent executing “kernel space” code on the server 
at the behest of your program. This will likely be smaller than the real, wall clock 
time since the server is multitasking many jobs at once. This can be greater or less 
than User Time depending on the application.

3. User Time - This is the CPU time spent executing “user space” code on the server 
at the request of your program. This will likely be smaller than the real, wall clock 
time since the server is multitasking many jobs at once. 

• The elapsed time reported is the time since the ppperf command was invoked, not 
since the process started. 

If you issue the command ppperf report detail, then ppperf will return the time spent 
broken down by compute node. The “Performance Process Measurement” section is the only 
one in which ppperf report detail will provide additional detailed information about 
your run. Here are the results of a new run of SumDifferences_loop.m under ppperf 
showing the difference between the default and the detailed report: 

As you can see, using ppperf report detail shows a breakdown of time spent on each 
compute node. You can use this information to help locate a node which might be particularly 
slow, either due to an excessively long task-parallel computation, or perhaps because it has 

Default Performance Process Measurement
-----------------------------------------------------------------
                                      value metric
                                    34.0630 Starp Real Time
                                    36.4111 Starp Sys Time
                                    78.6709 Starp User Time

Detailed Performance Process Measurement
-----------------------------------------------------------------
                                      value metric 
                                    34.0630 Starp Real Time
                                    34.0630 Starp Real Time(0)
                                    33.1740 Starp Real Time(1)
                                    33.2720 Starp Real Time(2)
                                    32.2670 Starp Real Time(3)
                                    36.4111 Starp Sys Time
                                     6.6670 Starp Sys Time(0)
                                     9.9482 Starp Sys Time(1)
                                    10.0010 Starp Sys Time(2)
                                     9.7949 Starp Sys Time(3)
                                    78.6709 Starp User Time
                                     9.8037 Starp User Time(0)
                                    23.2090 Starp User Time(1)
                                    23.2539 Starp User Time(2)
                                    22.4043 Starp User Time(3)
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other activity running on it. You can use this information to help balance the load across all 
compute nodes on your machine. 

Star-P® Profiling

This section lists all functions called on the server while running your program. It tabulates 
the number of invocations as well as the average time spent in each function, along with 
some other performance metrics. 

The functions listed in the Star-P® Profiling section are exclusively built-in Star-P® functions. 
The built-in Star-P® functions are typically named something like ppdense_foo or 
ppbase_bar to distinguish them from the names you might give to your functions. In 
general, these Star-P® built-in functions are not available to you to run, and you cannot use 
help ppdense_foo at the command line to get more information about the function. 
However, the functions are usually named in a logical way so that you can make an educated 
guess about what the functions are doing. 

The information provided in the Star-P® Profiling section is particularly useful when tweaking 
your code for best performance, since it allows you to identify which functions consume the 
majority of your compute time. You can focus your optimization efforts on improving the 
functions which consume the most time, or at least optimizing the number of times each 
function is invoked. 

Here's the Star-P® Profiling section copied from the above run of 
SumDifferences_loop.m:

Star-P® Profiling
-----------------------------------------------------------------------------
function                 calls      time  avg time    %calls     %time
ppdense_viewelement       1998   16.9636 0.0083551   99.8501   99.6233
ppbase_setoption             1  0.030958  0.030958  0.049975   0.18475
ppdense_rand                 1  0.023654  0.023654  0.049975   0.14116
ppbase_profile_onoff         1  0.008517  0.008517  0.049975  0.050827
Total                     2001   16.7567 0.0083742

As you can see, the Star-P® built-in function ppdense_viewelement consumed the 
majority of the compute time during the run. But what is ppdense_viewelement? This 
function is invoked each time an array element (for example, a scalar) must be returned from 
the server to the client for processing. Our program SumDifferences_loop.m iterates 
over all elements in the vector and sums them, as follows: 

n = length(xpp)-1;
for i = 1:n
   dx = xpp(i+1)-xpp(i);
   dx_sum = dx_sum + dx^2;
end
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Recall that under Star-P®, scalar variables always live on the client. Therefore, when this 
program requests the values xpp(i+1) and xpp(i), Star-P® goes to the server, gets the 
individual elements out of the vector, and brings them to the client where they are added. 
That's why ppdense_viewelement is invoked 1998 times. 

Lessons Learned

When using ppperf on your code, look for the following things: 

• Time spent on client vs. server. Is the program running on either client and server 
according to your expectations? That is, if you think you have exported a calculation 
to the server, but you see significant activity on the client, this is a signal that your 
program isn't fully optimized. 

• Excessive network time. Monitor your program's network time. Keep in mind that 
a 100mb or 1Gig network link between your client and server can transport many 
millions of bytes in well under a second. Therefore, if your network time is not 
commensurate with transferring a small number of bytes (depending upon your 
program's structure), you may be paying a communication time penalty due to for 
loops or an unexpected data transfer. 

• Number of times the client runs a task. If your client runs a short task many times, 
or there is significant “ping-ponging” between the client and the server, your program 
is causing too much client/server communication. Find a way to keep all the 
computation on the server. Perhaps you need to vectorize more? 

• Excessive time spent on one or two functions. If your program spends most of 
its time running one particular function, you should probably focus attention on why 
that is the case. If the one function was written by you, then it is a good candidate 
for further optimization. 

• Many calls to ppdense_viewelement. ppdense_viewelement transfers 
scalar data from server to client. If this function dominates your function usage, it is 
a signal that you need to vectorize your code. 

Using ppperf's graphical mode

Besides providing you a text report, ppperf can also show a graph of client and server 
activity. This information can be useful if you want to see exactly when your computation was 
passed from client to server and back again. 

You invoke ppperf graphical mode in much the same way as you get a text report. The 
particular command sequence looks like this:

ppperf o2 1
ppperf graph on
my_function
ppperf off 
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A screenshot showing the results of a graphical profiling session using ppperf is presented 
in Figure 5-2. 

Figure 5-2  Graphical output of ppperf2

Graphical output of ppperf, showing activity on client (top), network (middle), and server 
(bottom). The units are percent of activity, where 100% means that the particular Star-P® 
subcomponent was active 100% of the time over the last measurement interval. Remember 
that this is not a measure of CPU utilization! Rather, the graph shows which Star-P® 
subcomponent is active (or has control over) performing your calculation. 

Here are some things to keep in mind when using ppperf's graphical mode: 

• The graphical display is only available in conjunction with the o2 and o3 statistics 
gathering levels. 

• When you turn on performance logging for graphical display, you must specify the 
logging interval. The default value (1 second for a text report) does not apply to 
graphical output. If you neglect to specify a logging interval, Star-P® will give you a 
“No samples” error. Again, the logging interval must be an integer; the units are 
seconds. Accordingly, in the above example the logging interval is explicitly set to 
one second. 

2. Illustration of the MATLAB® Desktop IDE by The MathWorks.
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• You can get a real-time running update of activity on the client and server by turning 
on graphics mode before invoking your function, as in the example shown in Figure 
5-2. Your graphic display will be updated whenever the client has control over your 
computation, and is available to update the graphics window. Note that if you kick 
off a long, server-side calculation (for example, using ppeval), the ppperf graphic 
won't update until the server is done working, and passes control to the client again. 
The same is true for the client side when it is in a CPU-bound execution.

• After the run is over, turn off the performance logging using ppperf off, as shown 
in Figure 5-2. If you do not turn off logging, then the performance graphic will 
continue to update, and the region of interest - the portion of the graph showing your 
computation running - will compress within the available space, making it hard to 
read. 

• If ppperf data gathering is not active when you invoke ppperf graph on (for 
example, you have issued a ppperf off command), then ppperf will plot the 
static results contained in the performance results table. If you do not have any data 
in the performance results table, Star-P® will give you a “No samples” error.

• Since performance samples are made at regular, but large intervals, the client and 
server utilization graphs - like that shown in Figure 5-2 - represent averages over the 
sample interval. As you know, Star-P® ping-pongs control between client and server; 
while one machine is busy processing, the other is essentially idle. In the program 
SumDifferences_loop.m, control is passed between the client and the server 
about 2000 times. However, the update interval is q seconds. Therefore, ppperf 
cannot graph each and every time control is passed between client and server. 
Rather, it plots the average time spent on each, over each 1 second measurement 
intervals. 

• When both client and server are idle, ppperf's graphing function will indicate 100% 
client utilization. This is because the graph itself is not a graph of CPU loading. 
Rather, it is simply an indication of which computer is currently in control of your 
computation. When both computers are idle, waiting for you to type something, then 
the client is the computer who is in control. Therefore, it's graph will indicate 100% 
utilization. 

You might wonder, “For what is ppperf's graphics facility useful?” It can be used for quick, 
visual identification of situations where there is too much communication between client and 
server during the course of a computation. 

This is signaled by graphs showing compute activity on both the client and the server at the 
same time. A better computation is shown in the graph in Figure 5-3. This particular 
computation involved computing the Mandelbrot set using a task-parallel algorithm. In this 
case, the client initialized some variables, and then passed control to the server. The server 
performed the bulk of the computation over a period of about 30 seconds, and then returned 
control to the client. 

The resulting graph shows that 100% of the computation takes place on either the client or 
the server, depending upon time. At no time does it appear that the computation is shared 
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between client and server. Therefore, this computation is not bogged down with client/server 
communication. 

Figure 5-3  Graphical output from ppperf showing a different Star-P® session. 

In this example, a ppeval call was used to compute the Mandelbrot set. The ppeval call 
lasted about 30 seconds, during which time the server was working on the computation 100% 
of the time, while the client idled.

Any successful computation performed using Star-P® should show a similar graph: 100% of 
the computation should take place on either the client or the server for long periods of time 
(seconds or longer). Control of the computation may bounce back and forth between client 
and server, but certainly not frequently, and at no time should your program appear to share 
the computation between client and server. 

This highlights another use of ppperf's graphing facility: It can alert you to situations where 
you think a portion of a calculation is taking place on the server, but it is actually running on 
the client. That is, since ppperf shows you where the computation is happening, it can help 
you verify that your program is actually doing what you think it should be doing. 

Finally, ppperf’s graphic mode can quickly show you if you are spending too much time 
running on the client. Since you likely purchased Star-P® to help export computations to the 
server, if you find that a lot of your compute time is spent on the client, then you probably 
need to modify your program so that more of the computation is performed on the server. 
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Lessons Learned

• Use ppperf's graphic facility as a quick way to see if your program requires too 
much client/server communication. This scenario is signaled by performance 
graphs showing computation is shared between client and server. 

• ppperf’s graphic facility can also verify that your code is actually doing what you 
think it should be doing. 

• The graphic facility can also show you if you are not getting enough use from your 
server. In the best case, you should see client activity at the beginning and end of 
your program run, and server activity in the middle for the bulk of its run. 

Using ppperf to Eliminate Performance Bottlenecks

To illustrate the utility of ppperf when optimizing your code's performance, let's look at an 
example finite element method calculation (FEM). FEM problems typically involve 
manipulating large matrices, and are computation intensive. 

Therefore, FEM problems are well-adapted to solution using Star-P®. In particular, 
data-parallel matrix manipulation is a logical use of Star-P® for FEM problems. This means 
that we want to structure the program so that all large matrices live on, and are processed on 
the server HPC. 

The example code shown below was originally written solely in MATLAB, with no parallel 
extensions. The program consists of four parts: 
1. Data read-in and initialization, 
2. Building the stiffness matrix, 
3. Solving the set of linear equations, and 
4. Post-processing and solution visualization. 

%  Initial, non-parallelized version.
clear;
  
disp('load grid file')
tic;
    load('/home/FEM/fem/mediumgrid.mat');
toc
 
% set up vertices for looping:
pi = points(connec(:,1),:);
pj = points(connec(:,2),:);
pm = points(connec(:,3),:);
 
% Each element (triangle) results into a [6x6]
% submatrix of K
nelem = size(connec,1);     % number of elements in the mesh
npoints = size(points,1);   % number of point that make up the mesh
nK = npoints*2;             % size of the stiffness matrix
 
% Set up the global variables used in the calculation of the stiffness
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matrix.
tocnp = 1;
disp('Building stiffnessmatrix');
tic
    % Set up global variables
    set_globals(1);
    % allocate row, column, value arrays
    II = zeros(6,6,nelem);
    JJ = II;
    KK = II;
    % Get stiffnessmatrix contribution for each mesh element
    for i = 1:nelem
        [II(:,:,i), JJ(:,:,i), KK(:,:,i)] = ...
            get_k_matrix(pi(i,:),pj(i,:),pm(i,:),connec(i,:));
    end
toc;
 
disp('Create sparse matrix');
tic;
    % Setup stiffness matrix as a sparse matrix:
    K = sparse(II(:),JJ(:),KK(:),nK,nK);
toc;
 
%
% Now we need to set the boundary conditions.
% For the boundary condititions we require that the
% vertices on the bottom stay fixed.
%
% find vertices on the bottom
disp('Apply boundary conditions');
tic;
    nbase = length(ipoints_base);
    K(2*ipoints_base-1,:) = 0.0;
    K(2*ipoints_base,:) = 0.0;
    K(:,2*ipoints_base-1) = 0.0;
    K(:,2*ipoints_base) = 0.0;
    K(2*ipoints_base-1,2*ipoints_base-1) = speye(nbase);
    K(2*ipoints_base,2*ipoints_base)     = speye(nbase);
toc;
 
% Make a force vector. Apply force along the top only.
% and only in the +x direction
disp('Make force vector');
tic;
    ntop = length(ipoints_top);
    force = 2;
    F = sparse(ipoints_top,ones(1,ntop),force,nK,1);
 
    % Just to make sure we have no forces excerted on the bottom
    F(2*ipoints_base-1) = 0.0;
    F(2*ipoints_base) = 0.0;
toc;
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% Solve the system of linear equations.
disp('Solve system');
tic;
    displacement = K\F;
toc;
 
% Calculate new point positions based on old ones and the displacement
% from the FEM analysis
tic;
    i= 1:npoints;
    new_points(i,1) = points(i,1)+displacement(2*i-1);
    new_points(i,2) = points(i,2)+displacement(2*i);
toc
 
% Plot the results
clf;
subplot(1,2,1)
h=trimesh(connec,points(:,1),points(:,2),zeros(size(points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;
 
subplot(1,2,2)
h=trimesh(connec,new_points(:,1),new_points(:,2),zeros(size(new_points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

It might be tempting to run this program under ppperf to see what happens. However, since 
it is a pure MATLAB program, it runs exclusively on the client. Therefore, it doesn't generate 
any server-side performance data, so profiling with ppperf does not provide any useful 
statistics. (Running this program under ppperf o3 would indeed show performance data, 
specifically the performance data gathered by MATLAB. Since this is not relevant to Star-P® 
performance tweaking, we will skip that step here.) 

Parallelizing this code under Star-P® involves several, simple steps. 

First, since FEM modeling is a logical candidate for data-parallel processing, we will simply 
read the matrix data into the server (instead of the client) by replacing the load statement 
with ppload. This tells Star-P® to read the data from a disk on the server directly into the 
server's memory. (This implies that you previously copied the data onto the server machine 
using a separate step, for example, using FTP.) This change is highlighted in blue in the 
listing below. 

Once the data is read into the server using ppload, a couple of other changes become 
necessary. First, since points, connec, pi, pj, and pm are now all server-side variables, the 
return from get_k_matrix(pi(i,:),pj(i,:),pm(i,:),connec(i,:)) will also be a 
server variable. Therefore, we must initialize II, JJ, and KK on the server, instead of the 
client. Second, since the matrices all live on the server, we must bring them to the client using 
ppfront before plotting. 
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With these changes, the parallelized FEM program takes the following form:

%  Partially parallelized version. -- fem_ppload.m.
clear;
  
disp('load grid file')
tic;

    ppload('/home/FEM/fem/mediumgrid.mat');   %  --- Star-P®! ---
toc
 
% set up vertices for looping:
pi = points(connec(:,1),:);
pj = points(connec(:,2),:);
pm = points(connec(:,3),:);
 
% Each element (triangle) results into a [6x6]
% submatrix of K
nelem = size(connec,1);     % number of elements in the mesh
npoints = size(points,1);   % number of points that make up the mesh
nK = npoints*2;             % size of the stiffness matrix
 
% Set up the global variables used in the calculation of the stiffness
matrix.
tocnp = 1;
disp('Building stiffnessmatrix');
tic
    % Set up global variables
    set_globals(1);
    % allocate row, column, value arrays

    II = zeros(6,6,nelem*p);                      %  --- Star-P®! ---
    JJ = II;                                      %  lives on server since
    KK = II;                                      %  derived from II
    % Get stiffnessmatrix contribution for each mesh element
    for i = 1:nelem
        [II(:,:,i), JJ(:,:,i), KK(:,:,i)] = ...
            get_k_matrix(pi(i,:),pj(i,:),pm(i,:),connec(i,:));
    end
toc;
 
disp('Create sparse matrix');
tic;
    % Setup stiffness matrix as a sparse matrix:
    K = sparse(II(:),JJ(:),KK(:),nK,nK);
toc;
 
%
% Now we need to set the boundary conditions.
%
% For the boundary condititions we require that the
% vertices on the bottom stay fixed.
%
% a) find vertices on the bottom
120 Star-P® Programming Guide for Use with MATLAB® Release 2.7



Performance Tuning and Monitoring
%
disp('Apply boundary conditions');
tic;
    nbase = length(ipoints_base);
    K(2*ipoints_base-1,:) = 0.0;
    K(2*ipoints_base,:)   = 0.0;
    K(:,2*ipoints_base-1) = 0.0;
    K(:,2*ipoints_base)   = 0.0;
    K(2*ipoints_base-1,2*ipoints_base-1) = speye(nbase);
    K(2*ipoints_base,2*ipoints_base)     = speye(nbase);
toc;
 
% Make a force vector. Apply force along the top only.
% and only in the +x direction
disp('Make force vector');
tic;
    ntop = length(ipoints_top);
    force = 2;
    F = sparse(ipoints_top,ones(1,ntop),force,nK,1);
 
    % Just to make sure we have no forces exerted on the bottom
    F(2*ipoints_base-1) = 0.0;
    F(2*ipoints_base) = 0.0;
toc;
 
% Solve the system of linear equations.
disp('Solve system');
tic;
    displacement = K\F;
toc;
 
% Calculate new point positions based on old ones and the displacement
% from the FEM analysis
tic;
    i= 1:npoints;
    new_points(i,1) = points(i,1)+displacement(2*i-1);
    new_points(i,2) = points(i,2)+displacement(2*i);
toc
 
% Move results to client for plotting

disp('Move results to client and plot them')   %  --- Star-P®! ---
tic;

    new_points = ppfront(new_points);          %  --- Star-P®! ---

    points = ppfront(points);                  %  --- Star-P®! ---

    connec = ppfront(connec);                  %  --- Star-P®! ---
toc;
 
 
% Plot the results
clf;
subplot(1,2,1)
h=trimesh(connec,points(:,1),points(:,2),zeros(size(points,1),1));
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set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;
 
subplot(1,2,2)
h=trimesh(connec,new_points(:,1),new_points(:,2),zeros(size(new_points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

With these changes, this program is now parallelized, and will execute on the server. 

Unfortunately, with the above changes, the FEM program is now extremely slow. Watching 
the output of disp as the program executes, it is clear that the above program gets stuck 
somehow when it tries to build the stiffness matrix. But what is wrong? To investigate this 
question, you can use ppperf in your Star-P® session as follows: 
1. Turn on profiling: ppperf o2. 
2. Run the program: fem_ppload. 
3. Let the program run for a while. Then, when you are tired of waiting for it to complete, hit 

<control>-C. 
4. Stop profiling: ppperf off. 
5. Bring up the ppperf graph: ppperf graph on. 

Here's a log showing this sequence of events in a Star-P® session: 

>> pp_perf o2
Start MATLAB/Star-P® Performance Metrics
>> fem_ppload
load grid file
Elapsed time is 0.100384 seconds.
Building stiffnessmatrix
Error in ==> datenum at 92
n = datenummx(arg1);

Error in ==> now at 16
t = datenum(clock);

Error in ==>
/usr/local/starp-versions/6718/matlab/pp_perfupdate.p>pp_perfupdate at 87

Error in ==>
/usr/local/starp-versions/6718/matlab/cppclient/private/ppprofileupdate.p>pppr
ofileupdate at 63

Error in ==>
/usr/local/starp-versions/6718/matlab/@ddense/ctranspose.p>ctranspose at 4

Error in ==> get_k_matrix at 66
i = j';
Error in ==> fem_ppload at 32
        [II(:,:,i), JJ(:,:,i), KK(:,:,i)] = ...
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>> pp_perf off
Stop MATLAB/Star-P® Performance Metrics
>> pp_perf graph on

(The error beginning Error in ==> datenum at 92 was generated as a consequence 
of pressing <control>-C while Star-P® was running.) The graph generated by this ppperf run 
is shown in Figure 5-4. The salient feature to note is that both client and server show about 
50% utilization for well over 60 seconds (the amount of time this calculation was allowed to 
run before it was killed). This is a strong signal that too much client-server communication is 
taking place. Every time computational control is handed off between client and server, a time 
penalty must be paid since communication between the two machines can last for several 
milliseconds. 

Figure 5-4  Graph generated when running fem_ppload.m 

Since both client and server show compute activity occurring at the same time, it is likely that 
control of the program is ‘ping-ponging’ rapidly back and forth between client and server. This 
implies a severe performance penalty, since each transfer of control involves a 
communications delay.

The hypothesis of too much client-server activity is further evidenced by the result of running 
ppperf report, as shown here: 

>> ppperf report 
=============================================================================

MATLAB/Star-P® Performance Metrics
Date:    17-May-2007 18:18:23
Client:  my_client_machine_address.com
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 123



Performance Tuning and Monitoring
Server:  my_server
Elapsed: 72 seconds 
-----------------------------------------------------------------------------
Performance Time Measurement 
-----------------------------------------------------------------------------
  count        min     max       mean        time   metric 
   6205     0.0014  3.9374     0.0077     29.6009   Client Time 
   6205     0.0002  0.1298     0.0004      2.6080   Network Time 
   6206     0.0000  0.0025     0.0000      0.1488   Client2Server 
   6206     0.0000  0.0043     0.0000      0.1171   Server2Client 
   6205     0.0073  0.1317     0.0093     39.9593   Server Time 
   6206     0.0073  0.1317     0.0093     39.9717   Command 
   6206     0.0072  0.1239     0.0073     27.3850   Command Distribute 
   5555     0.0000  0.0528     0.0004      2.1035   Command Execute 
    978     0.0000  0.0137     0.0016      1.5488   Command Execute MathOp
   6206     0.0000  0.0014     0.0001      0.4486   Command EStatus
   3423     0.0000  0.0001     0.0001      0.2308   Command Execute Move 
    327     0.0002  0.0527     0.0005      0.1577   Command Execute LibOp
    658     0.0000  0.0164     0.0001      0.0470   Command Execute SubsRef
   1312     0.0000  0.0001     0.0000      0.0327   Command Execute Misc
    163     0.0000  0.0002     0.0000      0.0055   Command Execute Redist
Performance Process Measurement 
-----------------------------------------------------------------------------
                                                  value metric 
                                               109.1050 Starp Real Time 
                                               122.6221 Starp Sys Time 
                                               258.5273 Starp User Time 

Star-P® Profiling 
-----------------------------------------------------------------------------
function                calls     time    avg time     %calls    %time 
ppdense_viewelement      3423  29.0718   0.0084931    55.1652  43.2014 
pp_dense_ppback           651  11.4339    0.017564    10.4915   16.991 
ppdensend_subsasgn_slice  487   8.1989    0.016835     7.8485  12.1838 
ppdense_subsref_row       652   7.5395    0.011564    10.5077  11.2039 
ppdense_kron              326   3.2293   0.0099058     5.2538   4.7988 
ppdense_scalar_op         326   3.1701   0.0097243     5.2538   4.7109 
ppdense_transpose         163   2.7824     0.01707     2.6269   4.1348 
ppdense_binary_op         163   1.5718   0.0096428     2.6269   2.3357 
ppio_loadallvar             1 0.073072    0.073072   0.016116  0.10859 
ppdense_subsref_col         3  0.06607    0.022023   0.048348 0.098182 
ppdensend_add               1 0.042937    0.042937   0.016116 0.063806 
ppdense_subsref_drow        3 0.033902    0.011301   0.048348 0.050379 
ppbase_id2ddata             4 0.033217   0.0083042   0.064464 0.049361 
ppbase_setoption            1 0.030537    0.030537   0.016116 0.045379 
ppbase_profile_onoff        1 0.016158    0.016158   0.016116 0.024011 
Total                    6205  67.2935    0.010845 
>>  
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There are several important things to note about this report: 

• In the “Performance Time Measurement” section, the network time, 2.6 seconds, is 
quite large. Although 2.6 seconds may seem small as a wall clock time, a 
high-speed Ethernet connection can transfer tens or hundreds of millions of bytes 
in one second. Therefore, 2.6 seconds of network time suggests that this program 
is burning up the client-server network connection by transferring scores of 
megabytes of data back and forth. 

• In the “Performance Bytes Measurement” section, the number of times control was 
passed from the server to the client was 6025. This is a strong signal that a for loop 
is at work. A for loop will cause control of the computation to ping-pong between 
client and server with each loop iteration. 

• In the “Star-P® Profiling” section, the function ppdense_viewelement was 
invoked 3423 times. Recall that this function is called every time a matrix element 
is moved from the server to the client. Again, since it is invoked so frequently, we can 
see the for loop at work. Also, ppdense_viewelement was running almost 43% 
of the time, suggesting that it is called repeatedly, as if from a for loop. 

At this point, it is clear that the code suffers from having a for loop, which drags down 
Star-P® performance. Inspecting the code shows that there is indeed a for loop involved in 
initializing the elements of the stiffness matrix, II, JJ, and KK. Optimizing this code obviously 
requires eliminating the for loop. Since the loop involves no dependencies, it can become a 
task-parallel operation, and can be replaced by a ppeval call to perform the job of initializing 
II, JJ, and KK. 

A new version of the program - in which the II, JJ, and KK are initialized in a ppeval call - is 
shown below. 

%  Fully parallelized version -- fem_ppload_ppeval.m.
clear;

disp('load grid file')
tic;

    ppload('/home/FEM/fem/mediumgrid.mat');  %  --- Star-P®! ---
toc

% set up vertices for looping:
pi = points(connec(:,1),:);
pj = points(connec(:,2),:);
pm = points(connec(:,3),:);
% Each element (triangle) results into a [6x6] submatrix of K
nelem   = size(connec,1);   % number of elements in the mesh
npoints = size(points,1);   % number of point that make up the mesh
nK = npoints*2;             % size of the stiffness matrix

% Set up the global variables used in the calculation of the stiffness matrix.
tocnp = 1;
disp('Building stiffnessmatrix');
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tic
    % Set up global variables. 
    % We need to use ppeval in this case since
    % we need to set the global variables on ALL processors.

    out = ppeval('set_globals',1:np);             %  --- Star-P®! ---
    %
    % Get stiffnessmatrix contribution for each mesh element
    % Note that we need to split the arguments along the rows
    [II,JJ,KK] = ppeval('get_k_matrix',split(pi,1),split(pj,1),...
                                       split(pm,1),split(connec,1));
                                                  %  --- Star-P®! ---
toc;

disp('Create sparse matrix');
tic;
    % Setup stiffness matrix as a sparse matrix:
    K = sparse(II(:),JJ(:),KK(:),nK,nK);
toc;

%
% Now we need to set the boundary conditions.
%
% For the boundary conditions we require that the
% vertices on the bottom stay fixed.
%
% a) find vertices on the bottom
%
disp('Apply boundary conditions');
tic;
    nbase = length(ipoints_base);
    K(2*ipoints_base-1,:) = 0.0;
    K(2*ipoints_base,:) = 0.0;
    K(:,2*ipoints_base-1) = 0.0;
    K(:,2*ipoints_base) = 0.0;
    K(2*ipoints_base-1,2*ipoints_base-1) = speye(nbase);
    K(2*ipoints_base,2*ipoints_base)     = speye(nbase);
toc;

% Make a force vector. Apply force along the top only 
% and only in the +x direction
disp('Make force vector');
tic;
    ntop = length(ipoints_top);
    force = 2;
    F = sparse(ipoints_top,ones(1,ntop),force,nK,1);
    % Just to make sure we have no forces exerted on the bottom
    F(2*ipoints_base-1) = 0.0;
    F(2*ipoints_base)   = 0.0;
toc;

% Solve the system of linear equations.
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disp('Solve system');
tic;
    displacement = K\F;
toc;

% Calculate new point positions based on old ones and the displacement
% from the FEM analysis
tic;
    i= 1:npoints;
    new_points(i,1) = points(i,1)+displacement(2*i-1);
    new_points(i,2) = points(i,2)+displacement(2*i);
toc

% Move results to client for plotting

disp('Move results to client and plot them')   %  --- Star-P®! ---
tic;
    new_points = ppfront(new_points);
    points = ppfront(points);
    connec = ppfront(connec);
toc;

% Plot the results
clf;
subplot(1,2,1)
h=trimesh(connec,points(:,1),points(:,2),zeros(size(points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

subplot(1,2,2)
h=trimesh(connec,new_points(:,1),new_points(:,2),zeros(size(new_points,1),1));
set(h,'EdgeColor','k');
view(2),axis equal,axis off,drawnow;

In this version of the program, initializing the stiffness matrix is performed almost totally as a 
parallel operation on the back-end HPC. The entire program takes under 15 seconds to 
complete. 

Running this program under ppperf reveals the reasons for the performance improvement: 
Control of the computation stays with the server for almost the entire computation. Because 
the for loop in the initialization section has been replaced with ppeval, the computation 
does not need to ping-pong rapidly and repeatedly between client and server. This is shown 
quite clearly in the graphical result from ppperf, shown in Figure 5-5. In that figure, transfer 
of computational control started with the client, but quickly passed to the server. The 
computation stayed on the server until the end of the run, when the computation was passed 
back to the client for results visualization. 

It's interesting to note that both client and server seem to have been active towards the end 
(starting at around 27 seconds); this reflects the fact that ppfront was invoked to move the 
results back to the client after they were generated on the server. As such, this behavior is 
unavoidable since the results must live on the client in order to graph them. 
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Figure 5-5  Graph generated when running fem_ppload_ppeval.m 

At the beginning of the graph, there is a dead time for about 12 seconds. This represents the 
time elapsed between typing ppperf o2 and typing the name of the function to run, 
fem_ppload_ppeval. Then, once the program started up, transfer of control passed 
quickly from client to server, and stayed with the server for most of the execution time. 

At the end, client and server were both active (starting at about 27 seconds) as evidenced by 
the rise in client utilization and the accompanying fall in server utilization. This is likely due to 
data being transferred back to the client via ppfront. 

Finally, the difference between this optimized run, and the previous, slow run can be seen in 
the results returned by ppperf report. The report generated by this successful run is 
shown below: 

>> ppperf report 
=============================================================================

MATLAB/Star-P® Performance Metrics 
Date: 17-May-2007 18:21:08 
Client:  my_client_machine_address.com
Server:  my_server
Elapsed: 31 seconds 
-----------------------------------------------------------------------------
Performance Time Measurement 
-----------------------------------------------------------------------------
   count      min      max     mean      time  metric 
      90   0.0015  10.9759   0.1944   17.4998  Client Time 
      90   0.0003   0.0314   0.0016    0.1471  Network Time 
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      90   0.0000   0.0231   0.0004    0.0395  Server2Client 
      90   0.0000   0.0059   0.0004    0.0389  Client2Server 
      90   0.0073   6.1153   0.1487   13.3871  Server Time 
      90   0.0073   6.1153   0.1487   13.3870  Command 
      86   0.0000   6.1080   0.1313   11.2893  Command Execute 
      10   0.0002   6.1079   1.0281   10.2808  Command Execute Octave
       2   3.9016   3.9017   1.9508    3.9017  Command Octave Init**
       3   0.0001   0.8286   0.2802    0.8406  Command Execute LibOp
      90   0.0072   0.0075   0.0072    0.6504  Command Distribute 
       2   0.2233   0.2401   0.1138    0.2275  Command Octave Unpack**
       2   0.0738   0.1567   0.0548    0.1096  Command Octave Xfer2Octave**
       8   0.0002   0.0928   0.0120    0.0957  Command Execute Move 
      10   0.0001   0.0109   0.0031    0.0311  Command Execute Redist 
       4   0.0055   0.0107   0.0072    0.0290  Command Octave PartGlue 
      10   0.0007   0.0027   0.0017    0.0171  Command Execute SubsRef 
      90   0.0000   0.0045   0.0002    0.0140  Command EStatus 
       2   0.0006   0.0173   0.0065    0.0131  Command Octave WrapperGen**
       2   0.0090   0.0138   0.0057    0.0114  Command Octave Xfer2Starp**
      10   0.0000   0.0023   0.0010    0.0096  Command Execute SubsAsgn 
      47   0.0000   0.0018   0.0002    0.0078  Command Execute Misc 
      22   0.0001   0.0014   0.0003    0.0062  Command Execute MathOp 
       3   0.0001   0.0001   0.0001    0.0002  Command Execute Create 
       2   0.0000   0.0000   0.0000    0.0000  Command Octave Execute 
Performance Process Measurement 
-----------------------------------------------------------------------------
                                                    value   metric 
                                                  17.5000   Octave Real Time 
                                                   4.9678   Octave Sys Time 
                                                  24.4189   Octave User Time 
                                                  32.0560   Starp Real Time 
                                                  13.7227   Starp Sys Time 
                                                  39.4756   Starp User Time 

Star-P® Profiling 
----------------------------------------------------------------------------
function                calls       time      avg time    %calls      %time 
ppemode_emodecall           2     10.336         5.168    2.2222    75.1343 
ppio_loadallvar             1      1.187         1.187    1.1111     8.6285 
ppsuperlu_gssvx             1    0.83727       0.83727    1.1111     6.0863 
ppdense_scalar_op          15    0.20813      0.013876   16.6667      1.513 
ppsparse_construct_rowcol   3    0.16121      0.053737    3.3333     1.1719 
ppdense_ppfront             3    0.11116      0.037052    3.3333    0.80802 
ppbase_id2ddata             6   0.065029      0.010838    6.6667    0.47271 
ppemode_part2densend        3   0.060169      0.020056    3.3333    0.43738 
pp_dense_ppback             4   0.059271      0.014818    4.4444    0.43085 
ppemode_get_common_sizes    4   0.056725      0.014181    4.4444    0.41235 
ppdense_subsref_col         3   0.052731      0.017577    3.3333    0.38331 
ppdense_ones                3   0.050913      0.016971    3.3333     0.3701 
ppdense_subsref_rowcol      2   0.043143      0.021572    2.2222    0.31362 
ppbase_getoption            3    0.04006      0.013353    3.3333     0.2912 
ppdensend_reshape           3   0.037715      0.012572    3.3333    0.27416 
ppdense_transpose           4   0.037607     0.0094018    4.4444    0.27337 
ppdense_makeRange           2   0.034688      0.017344    2.2222    0.25215 
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ppdense_binary_op           2   0.034093      0.017046    2.2222    0.24783 
ppdense_subsref_drow        3   0.032474      0.010825    3.3333    0.23606 
ppdense_subsasgn_rowcol     2   0.032009      0.016004    2.2222    0.23268 
ppdensend_clobber_singlet   3     0.0294        0.0098    3.3333    0.21371 
ppsparse_subsasgn_col_s     2   0.028776      0.014388    2.2222    0.20918 
ppsparse_subsasgn_rowcol    2   0.026117      0.013059    2.2222    0.18985 
ppsparse_reshape            2   0.026024      0.013012    2.2222    0.18917 
ppbase_setoption            1   0.025033      0.025033    1.1111    0.18197 
ppsparse_subsasgn_row_s     2   0.024614      0.012307    2.2222    0.17892 
ppsparse_subsasgn_idx_s     2   0.024431      0.012215    2.2222    0.17759 
ppemode_part2dense          1   0.023146      0.023146    1.1111    0.16825 
ppdense_subsref_idx         2   0.020242      0.010121    2.2222    0.14714 
ppsparse_nnz                1   0.015974      0.015974    1.1111    0.11612 
ppbase_profile_onoff        1   0.015961      0.015961    1.1111    0.11602 
ppsparse_construct_rowcol   1   0.009912      0.009912    1.1111   0.072052 
ppsparse_sparse2full        1   0.009668      0.009668    1.1111   0.070279 
Total                      90    13.7567       0.15285 
>>

The important features to observe in this report are: 

• In the “Performance Time Measurement” section, the network time used is 0.15 
seconds, which is consistent with reduced client-server communication. 

• Under “Performance Process Measurement” a new process has appeared: Octave. 
This signals that the Octave engine has been invoked on the back-end server during 
processing. Since the only change made in the code involves the ppeval call, the 
presence of Octave amongst the called processes signals that ppeval has 
executed Octave code while setting up the stiffness matrix -- most likely while 
executing get_k_matrix.  

• In the “Star-P® Profiling” section, no function is called more times than any other. 
This is in contrast to the report generated for fem_ppload.m above, in which 
ppdense_viewelement was invoked 3423 times. 

• A new function, ppemode_emodecall, was invoked only twice, but soaked up 75% 
of the compute time. This function is the Star-P® function which handles ppeval 
calls on the server side. Since the ppeval call which initialized the stiffness matrix 
soaked up the majority of the wall clock time during this run, it makes sense that 
ppemode_emodecall uses most of the server processing time. 
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Lessons Learned

• Use ppperf in graphics mode to identify sections of code with excessive 
client-server communication. 

• Use ppperf report to provide detailed analysis of what resources your program 
uses while executing. 

• For best Star-P® performance, make sure your program is thoroughly vectorized! 
Avoid using for loops over multi-dimensional data whenever you can. Looping over 
multi-dimensional data necessitates transfer of scalar data between client and 
server, causing a significant time penalty due to communication overhead. 

ppperf command summary

Command Explanation

ppperf on | o1 
ppperf o2 | o2 <seconds> 

This command starts the performance monitoring 
process and initializes the results table. It is always the 
first command you issue when you want to profile your 
code's execution. 

The profiling level (1, 2, 3) is prefixed with the lower case 
letter 'o'. The different profiling levels are invoked using 
these flags: 

• on -- The flag is a synonym for o1. That is, ppperf 
on is equivalent to ppperf o1. 

• o1 -- This returns the data stored in the performance 
counters and timers on the server. 

• o2 -- This returns the data in the server's 
performance counters and timers. It also returns the 
server-side function call history data typically 
returned by ppprofile. 

• o3 -- This returns the data stored in the server's 
performance counters and timers. It also returns the 
server-side function call history data. Finally, it 
returns the client-side profiling data which is 
gathered by MATLAB's "profile" function. 

After profiling levels o2 or o3, you may optionally specify 
the update interval (in seconds) for statistics gathering 
(denoted by <seconds>). The update interval must be an 
integer. If you don't specify this parameter, update interval 
sampling is not done. 
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UNIX Commands to Monitor the Server

While Star-P® is designed to allow you to program at the level of the MATLAB command 
language and ignore the details of how your program runs on the HPC server, there are times 
when you may want to monitor the execution of your program directly on the server. 

ppperf off This command turns off the performance monitoring 
process, but leaves the results table alone. Use this 
command if you want to perform some work without 
gathering statistics. 

ppperf clear This command clears the results table, and turns off 
performance data logging. Use this command if you want 
to end your performance monitoring session. 

ppperf report This command prints out a large text report providing 
information about compute resources utilized by your 
program while it ran. 

ppperf report detail This command prints out a large text report providing 
information about compute resources utilized by your 
program while it ran. It provides more detail than “ppperf 
report”. In particular, it breaks down the process 
measurement results for each compute node on your 
parallel server. 

ppperf graph on This command displays a graph showing compute 
resource utilization on the client, network, and server. If 
you invoke this command before running your program, it 
will show you a real-time graph of your computation's 
activity (as long as control passes to the client). If you 
invoke this command after executing “ppperf off”, it 
will show you the static graph of compute activity recorded 
between “ppperf on” and “ppperf off”.

Also, you must specify the update sample when using the 
graph option.

 

• Note that the update interval must be specified to 
enable the graph option. 

ppperf graph off This command closes the performance graph window. It 
does not affect the compiled performance data table. 
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The following commands will often be useful for monitoring server processes. Execute these 
commands on the HPC server in a terminal window.

• top: This command is often the most useful. See man top for details. It displays the 
most active processes on the system over the previous time interval, and can 
display all processes or just those of a specific user. It can help you understand if 
your Star-P® server processes are being executed, if they're using the processors, 
if they're competing with other processes for the processors, etc. top also gives 
information about the amount of memory your processes are using, and the total 
amount of memory in use by all processes in the system. 

• ps: The ps command will tell you about your active processes, giving a snapshot 
similar to the information available via top. Since the Star-P® server processes are 
initiated from an ssh or rsh session, you may find that ps -lu <yourlogin> will 
give you the information you want about your Star-P® processes. In the event that 
Star-P® processes hang or get disconnected from the client, this can give you the 
process IDs you need to kill the processes.
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Chapter 6
Star-P® Functions

This chapter summarizes the Star-P® functions that are not part of standard MATLAB and 
describes their implementation. It also describes the syntax of the Star-P® functions.

Basic Server Functions Summary

The following table lists the types of functions available.

Function Description

General Functions

fseek The return value FID is a distributed file 
identifier. Passing this value to the 
following MATLAB functions: fopen(), 
fread(), fwrite(), fseek(), frewind() and 
fclose() will operate on distributed 
matrices on the server with the same 
semantics as with regular file id on the 
client. 

np Returns the number of processes in the 
server.

p Creates an instance of a dlayout 
object.

pp Is useful for users who wish to use the 
variable p for another purpose.

ppbench Collects basic information about the 
hardware and software characteristics 
of your server, and runs low-level 
performance tests on your server.
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ppclear Clears distributed variables from the 
server memory.

ppgetoption Returns the value of Star-P® 
properties.

ppsetoption Sets the value of Star-P® properties.

ppgetlog Get the Star-P® server log file.

ppgetlogpath Get starpserver log file path.

ppinvoke Invoke a function contained in a 
previously loaded user library via the 
Star-P® Software Development Kit 
(SDK). 

pploadpackage Load a compiled user library on the 
server.

ppunloadpackage Unload a user library from the server.

ppfopen Open a distributed server-side file 
descriptor. The syntax is similar to that 
of the regular fopen() but the file is 
accessed on the server. You control 
data distribution when reading data 
from a file on the server as column 
distributed only.

ppquit Disconnects from the server and 
causes the server to terminate.

ppwhos Gives information about distributed 
variables and their sizes (similar to 
whos).

pph5whos Print information about variables in a 
HDF5 file.

Data Movement Functions

ppback Transfers a local matrix to the server 
and stores the handle to the server 
matrix.

ppfront Retrieves a distributed matrix from the 
server and stores it in local matrix.

Function Description
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ppchangedist Allows you to explicitly change the 
distribution of a matrix in order to avoid 
implicit changes in subsequent 
operations.

pph5write Writes variables to an HDF5 file on the 
server.

pph5read Reads distributed variables from an 
HDF5 file on the server

ppload Loads a data set from the server 
filesystem to the back-end.

ppsave Saves backend data to the server 
filesystem.

Task Parallel Functions

bcast, ppbcast Broadcasts an array section where the 
entire argument is passed along to 
each invocation.of a function called by 
ppeval.

split, ppsplit Splits an array for each iteration of a 
ppeval function.

ppeval Executes a specified function in parallel 
on sections of input array(s)

When using ppeval or ppevalsplit to call a compiled C++ 
library function, use the format PACKAGENAME:FNAME, 
where PACKAGENAME is the module name as returned by an 
earlier call to ppevalcloadmodule, and, FNAME is the 
function name registered in that module. For example, the 
call:

ppeval('C://solverlib:polyfit', arg1, arg2);

invokes the polyfit function in the imsl ppevalc module 
with input arguments arg1 and arg2.

ppevalsplit Returns a dcell object, a cell array of 
return values from each iteration

Function Description
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General Functions

fseek

ST = fseek(fid, offset, origin)

Repositions the file position indicator in the file with the given distributed file identifier FID to 
the byte specified with the offset.

The return value FID is a distributed file identifier. Passing this value to the following MATLAB 
functions: 

• fopen()

• fread()

• fwrite() 

• fseek()

• frewind() and 

• fclose() 

ppevalcloadmodule Loads a C++ module for task parallel 
operation on the server. This function is 
deprecated as of Release 2.6.0. 
Loading compiled C++ libraries can 
now also be performed using 
pploadpackage.

ppevalcunloadmodule Removes a previously loaded C++ 
module.from the server. This function is 
deprecated as of Release 2.6.0. 
Unloading compiled C++ libraries can 
now also be performed using 
ppunloadpackage.

Performance Functions

ppperf Star-P®’s performance monitoring 
function.

ppprofile Collects and display performance 
information on Star-P®

pptic/pptoc Provides information complementary to 
the MATLAB® tic/toc command

Function Description
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np

n = np

Function Syntax Description

• n (double) - number of processes

• np returns the number of processes in the server. This is the argument that was 
passed to the -p switch to starp.

Note: This number should be less than or equal to the number of processors.

p

z = p

Function Syntax Description

• z (dlayout) - a dlayout object

• p creates an instance of a dlayout object. p by itself is a ‘symbolic variable’. 
Variables of type dlayout are used to tag dimensions as being distributed.

pp

z = pp

Function Syntax Description

• z (dlayout object) - a dlayout object

• pp is an alias to p. pp is useful for users who wish to use the variable p for another 
purpose.

Reference

• See p.

ppbench

ppbench collects information about the basic hardware and software characteristics of your 
server. When utilizing multiple CPUs in a cluster configuration, the output of this test should 
be examined for consistency; for example, the amount of memory per node should be the 
same and the reported CPU information is similar.
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If ppbench is invoked with an output argument, then it will return a data structure that can be 
stored using the save function and later displayed (see example 1 below).

If ppbench is invoked with no input arguments, then it acts as if it were invoked with the 
-levels [0,1] switch.

If the -levels switch is used, the additional argument is either a scalar or a list of levels to 
be run. (see example 2 below)

ppbench('-levels',0) will print the lowest level system information which is extracted 
from /proc/cpuinfo and /proc/meminfo.  In addition, when the Star-P® server utilizes 
more than 1 CPU, the generated report will include MPI latency and bandwidth data.

ppbench('-levels',1) will print the results of a single CPU HPC Streams benchmark. 
This provides an interesting data point that represents an important class of simple 
operations that turn up frequently in HPC applications. See http://www.cs.virginia.edu/stream/ to 
see how your results compare with a range of commodity and special purpose CPUs.

If the '-display' switch is used (example 3), the additional argument identifies the data 
structure saved from a previous invocation of ppbench, which is then displayed. 

Example 1:

X = ppbench

Example 2:

ppbench('-levels',[0,1])

Example 3:

ppbench('-display',X)

ppclear

ppclear eliminates distributed variables from the caller’s Star-P® workspace, and 
immediately frees the memory allocated for them on the server. If no argument is provided, 
then ppclear removes all distributed variables in the workspace.

ppclear('var1','var2') or ppclear var1 var2 removes the listed variables only.

Important:Invoking bpp = app; ppclear app; will leave the symbol bpp in your 
workspace, but the distributed object accessed through bpp will no longer 
exist. When you desire a hard copy of a variable, as opposed to a soft copy, 
use assignment statements such as bpp = +app; or bpp = app(:,:);.
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ppgetoption

Returns the value of the Star-P® properties.

ppsetoption 

Sets the value of the Star-P® properties.

ppsetoption('option','value') 

Function Syntax Description

• ppsetoption('SparseDirectSolver', 'value') where value can be 
SuperLU or MUMPS

• ppsetoption('log', 'value') where value can be one of on (default) or off. 
This controls whether information about the steps executed by the server is written 
to the log.

• ppsetoption('ppfront_msg','value') where value can be one of on 
(default) or off. This controls whether or not the warning message from ppfront 
and ppback about large transfers and from ppchangedist about large 
redistributions is emitted.

• ppsetoption('ppfront_size',size) where size is the threshold above 
which the ppfront/ppback/ppchangedist warning message will be emitted. 
The default is 100 megabytes.

• ppsetoption('TaskParallelEngine',<'engine'>) where 'engine' is a 
sting containing the task parallel engine you wish to use when calling ppeval or 
ppevalsplit. Options for the task parallel engine setting include 
'octave-2.9.5' (default), 'octave-2.9.9', or 'C'. Choosing 'C' as your 
task parallel engine allows you to call functions from compiled task parallel 
packages that are loaded using pploadpackage and called with ppeval or 
ppevalsplit.

ppgetlog

Get the Star-P® server log file.

Function Syntax Description

• f = ppgetlog
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Returns the filename of a local temporary file containing the Star-P® server log. The 
temporary file is deleted when MATLAB exits.

• ppgetlog(FILENAME)

Stores a copy of the Star-P® server log file in FILENAME.

• ppgetlog -all

Copies ALL files from the server log directory into the client log directory and creates 
an all_logs.zip archive with all files in the client log directory.

• ppgetlog -all <filename>

Creates a <filename> zip archive with all files from the client and server log directories.

• f = ppgetlog -all

Creates an all_logs.zip archive with all files from the client and server log 
directories and returns the full filename of the archive.

• ppgetlog -all -nozip

Copies all files from the server log directory into the client log directory.

The '-nozip' option is ignored if '-all' is not specified, <filename> is ignored if '-all 
-nozip' is specified, and the output is an empty string if '-all -nozip' is specified.

Note: ppgetlog will make an SSH connection to the Star-P® server machine to fetch 
the log file, so if your ssh client is not configured for passwordless SSH, then you 
may be prompted for your server password again.

ppgetlogpath

Get starpserver log file path.

Function Syntax Description

• F = ppgetlogpath returns the filename of the starpserver log on the server. 

• F = ppgetlogpath('server') returns the filename of the starpserver log on the 
server. 

• F = ppgetlogpath('client') returns the filename of the starpclient log on the 
client. 

The naming format for individual session log directories is YYYY_MM_DD_HHMM_SS. Hours 
are represented in the 24-hour format. 

The server log and configuration files will be named as follows: 
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<log>/workgroup_manager.log 
<log>/starp_server.log 
<log>/octave_$MPI_RANK.log 
<log>/machine_file 
<config>/machine_file.user_default 
<log>/starp_session_id.* 
<config>/user_env.sh 

The Client log files will be named as follows:  

<log>/starpmatlab.log 
<log>/starpclient.log

ppinvoke

Invoke a function contained in a previously loaded user library via the Star-P® SDK.

Function Syntax Description

[varargout] = ppinvoke(function, varargin)
Note: See the “Star-P® Software Development Kit (SDK) Tutorial and Reference Guide” 

for more information on this function.

pploadpackage

Loads a compiled task parallel or data parallel user library on the server using positional 
arguments.

Function Syntax Description

stringTP = pploadpackage('C','/path/to/package.so','TPname')
stringTP = pploadpackage('C','/path/to/package.so')

Loads a package named 'package.so' containing compiled functions for later use in 
ppeval. The first argument, specifies the language in which the target package is written. 
Currently, only C or C++ libraries can be loaded on the server for task parallel operation, and 
require the initial argument to be the string 'C'. The second string argument specifies a 
user-defined name that is used for identification of the task parallel package on the server. 
The string provided with the keyword argument name is returned in the function output 
stringTP. If the third argument 'TPname' is not provided, then the naming convention 
utilized for assigning an output string to stringTP is to take the filename without path, 
extension, or underscores, converted to lowercase. This change ensures that the default 
name can always be used to prefix a function name, and is recognizable by the Star-P® client 
and server.    

stringDP = pploadpackage('/path/to/package.so','DPname')
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stringDP = pploadpackage('/path/to/package.so')

When the initial engine string argument is omitted, the package specified will be loaded as a 
data parallel package. Currently, only C or C++ libraries can be loaded on the server for task 
parallel operation. The keyword argument “name” specifies a user-defined name that is used 
for identification of the data parallel package on the server. The string provided with the 
keyword argument name is returned in the function output stringDP. If the name keyword is 
not provided, then the naming convention utilized for assigning an output string to stringDP 
is to take the filename without path, extension, or underscores, converted to lowercase. This 
change ensures that the default name can always be used to prefix a function name, and is 
recognizable by the Star-P® client and server.    

Note: See the “Star-P® Software Development Kit (SDK) Tutorial and Reference Guide” 
for more information on this function.

ppunloadpackage

Unload a user task parallel or data parallel library from the server.

Function Syntax Description

ppunloadpackage('C','TPname')
ppunloadpackage('C',stringTP)

By passing the initial engine string argument,'C', along with a string containing the name of 
a compiled language task parallel package that has previously been loaded on the server, 
ppunloadpackage will unload the package from the Star-P® server’s current compiled 
language task parallel engine.

ppunloadpackage('DPname')
ppunloadpackage(stringDP)

By passing only a single string argument, containing the name of a compiled language data 
parallel package that has previously been loaded to the server, ppunloadpackage will 
unload the package from the Star-P® server.

In the case of unloading either a task parallel or data parallel package, if the name given for the 
package does not match the name of a package already loaded on the server, then an error will 
be thrown.

Note: See the “Star-P® Software Development Kit (SDK) Tutorial and Reference Guide” 
for more information on this function.
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ppfopen

Open a distributed server-side file descriptor. The syntax is similar to that of the regular 
fopen() but the file is accessed on the server. You control data distribution when reading 
data from a file on the server as column distributed only.

Function Syntax Description
FID = ppfopen('F') 

Opens file ‘F’ in read-only mode. 

FID = ppfopen('F', MODE) 

Opens file F in the mode specified by MODE. MODE can be: '

Return Values

The return value FID is a distributed file identifier. Passing this value to the following 
MATLAB functions: fopen(), fread(), fwrite(), frewind() and fclose() will 
operate on distributed matrices on the server with the same semantics as with regular file 
id on the client.

Note: For fread(), you control data distribution when reading data from a file on the 
server as column distributed only.

ppquit

Disconnects from the server and causes the server to terminate.

ppwhos

ppwhos lists the variables in the caller's Star-P® workspace. ppwhos is aware of distributed 
matrices that exist on the server so it will return the correct dimensions and sizes for those 
matrices, as well as returning the distribution information.

MODE DESCRIPTION

rb read

wb write (create if necessary)

ab append (create if necessary)

rb+ read and write (do not create)

wb+ truncate or create for read and write

ab+ read and append (create if necessary)
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ppwhos is the Star-P® equivalent of the MATLAB whos command. It provides detailed 
information about the distribution of the server side variables (2nd column), their size (3rd 
column), and their types (4th column). 

All distributed variables will also show up in the MATLAB whos command, but the information 
displayed for these variables does not accurately represent their size and distribution 
properties. The ppwhos output helps align the distributions of the variables; in general having 
similar distributions for all variables provides the best performance. It also allows identifying 
variables that should be distributed, since they are large, which variables are not, and 
variables that should not be distributed, since they are small, but are distributed. A typical 
ppwhos output looks something like this:

>> app = rand(1000,1000*p);
>> bpp = rand(1000*p,1000);
>> c = rand(1000,1000);
>> ppwhos
Your variables are:
  Name       Size            Bytes        Class
  app        1000x1000p      8000000      ddense array
  bpp        1000px1000      8000000      ddense array
  c          1000x1000       8000000      double array

Grand total is 3000000 elements using 24000000 bytes
MATLAB has a total of 1000000 elements using 8000000 bytes

Star-P® server has a total of 2000000 elements using 16000000 bytes

pph5whos 

Print information about variables in a HDF5 file. 

pph5whos('FILE') 

Prints size and type information of variables in an HDF5 FILE on the server. The format is 
similar to the MATLAB whos function. 

S = pph5whos('FILE') 

Returns the dataset names in an HDF5 FILE along with the corresponding size and type 
information in a structure array, S. 

Note: pph5whos is able to parse an arbitrary HDF5 file, but will return accurate size and 
type information only for datasets that consist of double or double complex dense 
and sparse data. In all other cases, the type field is marked 'unknown'. 

Reference

See also: pph5write, pph5read. 
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Data Movement Functions

ppback

Bpp = ppback(A)
Bpp = ppback(A, d)

Transfer the MATLAB matrix A to the backend server and stores the result in Bpp. A can be 
dense or sparse.

Function Syntax Description

• Input:

• A (dense/sparse matrix) - MATLAB matrix to be transferred

• d (optional) - distribution

• Output

Bpp (ddense/ddensend/dsparse matrix) - distributed matrix

Transfer the MATLAB matrix A to the backend server and store the result in B. 

If A is dense and two-dimensional:

• If d is not specified, then Bpp is column distributed unless it is a column 
vector of length > 1, in which case it is row distributed.

• If d is 1, then Bpp is row distributed.

• If d is 2, then Bpp is column distributed.

If A is dense and greater than two-dimensional:

• If d is not specified, then Bpp is distributed along the last dimension, else.

• Bpp is distributed along the dimension specified.

If A is sparse:

• Bpp is row distributed.

Important:A warning message is displayed if the transfer is over a threshold size 
(currently 100MB), to avoid silent performance losses. Emission of the 
message or the value of the threshold can be changed by use of the 
ppsetoption command.

Reference:

See also ppfront, ppsetoption.
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ppfront

Transfers the distributed matrix App from the server to the MATLAB client.

B = ppfront(App)

Function Syntax Description

• Input: App - distributed matrix

• Output: B (dense/sparse MATLAB matrix) - local copy of App

ppfront transfers the distributed matrix A from the server to the MATLAB client. 

• If App is a distributed dense matrix, then B is a dense MATLAB matrix. 

• If App is a distributed sparse matrix, then B is a sparse matrix. 

dlayout objects are converted to double and other non-distributed objects are preserved.

Important:A warning message is emitted if the transfer is over a threshold size (currently 
100MB), to avoid silent performance losses. Displays the warning message or 
the value of the threshold can be changed by use of the ppsetoption 
command. Currently, there is also a 2GB limit for the size of data that can be 
transferred from the server to the client using ppfront.

Reference

See also ppback, ppsetoption.

ppchangedist

The ppchangedist command allows you to explicitly change the distribution of a matrix in 
order to avoid implicit changes in subsequent operations. This is especially important to do 
when performing operations within loops. In order to maximize performance, operands 
should have conformant distributions. ppchangedist can be used before and/or after the 
loop to prepare for subsequent operations.

Function Syntax Description

 ppchangedist(App,dist)
• App is input ddense

• dist is the desired distribution

•  1 for ROW

•  2 for COLUMN
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Important:A warning message is emitted if the transfer is over a threshold size (currently 
100MB), to avoid silent performance losses. Emission of the message or the 
value of the threshold can be changed by use of the ppsetoption 
command.

pph5write

Write variables to a HDF5 file on the server. 

Function Syntax Description

pph5write('FILE', VARIABLE1, 'DATASET1', VARIABLE2, 'DATASET2', ...) 

Writes VARIABLE1 to DATASET1 in the FILE specified on the server in the HDF5 format. 

• If the FILE already exists, it is overwritten. 

• Similarly if one of the dataset variables already exists, it is also overwritten with the 
new variable. 

pph5write('FILE', 'MODE', ...) 

Specifies the output mode which can either be 'clobber' or 'append'. 

• If the mode is 'clobber' and FILE already exists, it is overwritten. 

• If the mode is 'append' and FILE already exists, the variables specified in the 
PPH5WRITE call are appended to the FILE. If FILE does not exist, it is newly 
created. 

Example 1

% Write matrix_a to the dataset /my_matrices/a and matrix_b to the  
% dataset /my_matrices/workspaces/temp/matrix_b to the file 
% /tmp/temp.h5 on the server, overwriting it if it already exists 
pph5write('/tmp/temp.h5', matrix_a, '/my_matrices/a', matrix_b, '/ 
          my_matrices/workspace/temp/matrix_b'); 

Example 2

% Append matrix_c to the existing file in the location / 
% my_matrices/workspace2/temp/matrix_c 
pph5write('/tmp/temp.h5', 'append', matrix_c,'/my_matrices/ 
          workspace2/temp/matrix_c'); 

Note: Currently, only writing double and double complex dense and sparse matrices is 
supported. 

Reference
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See also: pph5read, pph5whos. 

pph5read 

[VARIABLE1, VARIABLE2, ...] = pph5read('FILE', 'DATASET1', 'DATASET2', ...)

Read distributed variables from a HDF5 file on the server.

Reads from FILE, the contents of DATASET1 into VARIABLE1, DATASET2 into VARIABLE2, 
etc. 

• If any of the datasets is missing or invalid, or the FILE is not a valid HDF5 file, the 
function returns an error.

Example

% Read the contents of the dataset /my_matrices/workspace/temp/matrix_b from 
the file /tmp/temp.h5 into the distributed variable matrix_d
matrix_d = pph5read('/tmp/temp.h5', '/my_matrices/workspace/temp/matrix_b');

Only the contents of datasets which contain double or double   complex dense or sparse data 
can currently be read. In the latter case, the sparse matrix must be stored in a specific format 
outlined in “How Star-P® Represents Sparse Matrices”.

Reference

See also: pph5write, pph5whos.

ppload

ppload('f', 'v1', 'v2', ..., dist)

Loads the distributed objects named v1, v2, ... from the file f into variables of the same 
names. Specify the distribution to use with dist.

Function Syntax Description

• ppload('f', dist)

Loads all variables out of mat file f, retaining their original names. All loaded matrices 
will be distributed the same way, given by dist. A dist value of 1 denotes a 
row-distributed object, and a value of 2 denotes a column-distributed object.

• ppload('f','v1', 'v2', ...)

• ppload('f')
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If dist is omitted, the ddense objects will be column-distributed by default.

• S = ppload('f', 'v1', 'v2', ..., dist)

Defines S to be a struct containing fields that match the returned variables.

• ppload f v1, v2, ...

Alternate syntax description

ppsave

ppsave('f', 'v1', 'v2', ...)

Saves the distributed objects v1, v2, ... directly to the server file f, each under its own name.

Function Syntax Description

• ppsave('f')

If no variables are listed, saves all distributed objects currently assigned to variable 
names in the workspace.

• ppsave('f', 'v1', 'v2', ..., -append)

Appends the variables to the end of file f instead of overwriting.

• ppsave('f', 'v1', 'v2', ...,)

Splits the variable data into one file per processor, each containing the local data for that 
processor.

• ppsave f v1, v2, ...

Alternate syntax description

Important:ppsave will not save the contents of any local (client) objects.

Task Parallel Functions

bcast, ppbcast

Tag distributed object x as being broadcast to all of the ppeval calls.

y = bcast(x)
y = ppbcast(x)

References
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Also, see ppeval, and split/ppsplit.

split, ppsplit

Split a distributed object Xpp along dimension dim. Used as input to ppeval.

y = split(Xpp,dim)
y = ppsplit(Xpp,dim)

Function Syntax Description

If dim == 0, then Xpp is split into its elements

Example

split(Xpp,1) splits Xpp by rows 
ppsplit(Xpp,2) splits Xpp by columns

Each row is then an input to the function specified in the ppeval call.

References

Also, see ppeval and bcast/ppbcast.

ppeval

Execute a function in parallel on distributed data. ppeval is just another way of specifying 
iteration. 

[o1,o2,...,oN] = ppeval('foo',in1,in2,...,inl)

Function Syntax Description

Two pieces of information are required for the call:

• The function to be executed. This is the foo argument. It is a string containing the 
function name.

• The specification of the set of inputs to foo. These are the in1 arguments. If foo 
is a function of k arguments then k in1 arguments are needed. Each of these 
arguments are split into inputs to foo by the following rules:

• If class(in1) = 'ddense', then it is split by columns.  
If class(in1) = 'double', then it is broadcast (each invocation  
of foo gets the entire argument)

• in1 = split(ddense,d), then it is split along dimension d
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• in1 = ppsplit(ddense,d),then it is split along dimension d

• in1 = split(ddense,0), then it is split into its constituent elements

• in1 = ppsplit(ddense,0), then it is split into its constituent elements

• in1 = bcast(a), then a is broadcast

• in1 = ppbcast(a), then a is broadcast.

Note: The arguments must “conform” in the sense that the size of each split (excluding 
broadcasts, of course) must be the same for all the arguments that are split. In this 
way we can determine the total number of calls to foo that will be made.

The output arguments, o1, o2, ..., oN are ddense or ddensend arrays representing 
the results of calling 'foo'. Each output argument is created by concatenating the result of 
each iteration along the next highest dimension; for example, if K iterations of foo are 
performed and the output of each iteration is a matrix of size MxN, then the corresponding 
output after the ppeval invocation will be a MxNxK matrix.

Note: Note that prior versions of Star-P® had a version of ppeval that did not reshape 
the output arguments to ddense objects. For backward compatibility, this function 
is now as ppevalsplit.

ppeval is only defined for arguments that are dense. 

If foo returns n output arguments then there will be n output arguments. See also split and 
bcast.

When using ppeval or to call a compiled C++ library function, use the format 
MODULENAME:FNAME, where MODULENAME is the module name as returned by an earlier call 
to ppevalcloadmodule, and, FNAME is the function name registered in that module. For 
example, the call:

ppeval('C://solverlib:polyfit', arg1, arg2);

invokes the polyfit function in the imsl C++ module with input arguments arg1 and 
arg2.

Known Differences Between MATLAB and Octave Functions

This section lists the known differences between MATLAB and Octave, which is useful to 
know when Octave is set as your task parallel engine (the default setting).

• If an inf value is present in a matrix that is used as an argument to eig in ppeval, 
Star-P® may hang, while MATLAB returns an error.

• When using the Star-P® Octave TPE, the evaluation of the '++' and '--' 
auto-increment/decrement operators differs between ppeval and MATLAB. For 
example, x=7;++x returns 8 in ppeval, but returns 7 in MATLAB. 
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ppevalsplit

ppevalsplit()

The dcell is analogous to MATLAB cells. The dcell type is different from the other 
distributed matrix or array types, as it may not have the same number of data elements per 
dcell iteration and hence doesn't have the same degree of regularity as the other 
distributions. This enables dcells to be used as return arguments for ppevalsplit(). 

Because of this potential irregularity, a dcell object cannot be used for much of anything 
until it is converted into a “normal” distributed object via the reshape operator. The only 
operators that will work on a dcell are those that help you figure out what to convert it into, 
e.g., size, numel, length, and reshape, which converts it, in addition to ppwhos. Luckily, 
you will almost never need to be aware of dcell arrays or manipulate them.

When using ppevalsplit to call a compiled C++ library function, use the format 
PACKAGENAME:FNAME, where PACKAGENAME is the module name as returned by an earlier 
call to ppevalcloadmodule (deprecated) or pploadpackage, and, FNAME is the function 
name registered in that package. For example, the call:

ppevalsplit('C://solverlib:polyfit', arg1, arg2);

invokes the polyfit function in the imsl C++ module with input arguments arg1 and 
arg2.

ppevalcloadmodule

NAME = ppevalcloadmodule(FNAME, NAME)

Loads a task parallel C++ module on the server.

This function is deprecated as of release 2.6.0. Compiled C and C++ task parallel libraries 
can now be loaded on the server with pploadpackage.

ppevalcunloadmodule

ppevalcunloadmodule(NAME)

Remove a previously loaded task parallel C++ module.

This function is deprecated as of release 2.6.0. Compiled C and C++ task parallel libraries 
can now be unloaded from the server with ppunloadpackage.
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Performance Functions

ppperf 

ppperf

Provides fine-grained profiling of compute activity on both the client and the server together. 
It pays close attention to the time required to perform computational tasks. It also tracks 
communication between the client and server over the network. The vision behind ppperf is 
to provide you a top-level view of what your program is doing as it runs your calculation. 
Using the information provided by ppperf, you can 

• identify program choke points, 

• identify excessive client/server communication, 

• see what functions are invoked on both client and server, and 

• see how long each function takes to finish. 

This information can be invaluable when debugging or optimizing a Star-P® application. 

Function Syntax Description

Command Explanation

ppperf [01 | 02 | 03 | on] 
<number> 

This command starts the performance monitoring 
process and initializes the results table. It is always the 
first command you issue when you want to profile your 
code's execution. <number> is the update interval (in 
seconds) for statistics gathering. The interval must be 
an integer. If you don't specify this parameter, it is set 
to 1 second. 

ppperf off This command turns off the performance monitoring 
process, but leaves the results table alone. Use this 
command if you want to perform some work without 
gathering statistics. You may later resume statistics 
gathering by entering ppperf resume. 

ppperf clear This command clears the results table, and turns off 
performance data logging. Use this command if you 
want to end your performance monitoring session. 

ppperf resume This command restarts the performance monitoring 
process (in other words, after you have paused it using 
ppperf off). It will not affect the results table. 
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ppprofile

The ppprofile command collects and displays performance information for Star-P®. 
ppprofile is a profiler for the Star-P® server. It allows you to examine which function calls 
the Star-P® server makes and how much time is spent in each call. 

Function Syntax Description

• ppprofile on starts the collection of performance data about each call from the 
Star-P® client to the Star-P® server.

• ppprofile on -detail basic has the same effect as ppprofile on.

• ppprofile on -detail full also collects information about the number of 
changes of distribution that occur on the server, and the amount of time spent 
executing in the server.

• ppprofile off stops gathering data without clearing the data that’s already been 
collected.

• ppprofile clear clears the collected data.

• ppprofile display displays the data about each server call as it occurs.

• ppprofile nodisplay delays the immediate display of data about each server call.

• ppprofile report generates a report of the data collected so far.

ppperf report This command prints out a large text report providing 
information about compute resources utilized by your 
program while it ran. 

ppperf report detail This command prints out a large text report providing 
information about compute resources utilized by your 
program while it ran. It provides more detail than 
ppperf report. In particular, it breaks the process 
measurement results down for each compute node on 
your parallel server. 

ppperf graph on This command displays a graph showing compute 
resource utilization on the client, network, and server. 
If you invoke this command before running your 
program, it will show you a real-time graph of your 
computation's activity (as long as control passes to the 
client). If you invoke this command after executing 
ppperf off, it will show you the static graph of 
compute activity recorded between ppperf on and 
ppperf off. 

ppperf graph off This command closes the performance graph window. 
It does not affect the compiled performance data table. 
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See "Summary and Per-Server-Call Timings with ppprofile" for examples of the usage of 
ppprofile. 

Example

To turn profiling on, issue the following command:

>> ppprofile on

Then follow with the commands or scripts of interest and end with ppprofile report:

>> ppprofile on                                                       
>> app = rand(1000*p);                                                
>> bpp = inv(app);                                                    
>> dpp = inv(app);                                                    
>> cpp = eig(bpp);                                                    
>> ppprofile report                                                   
function                 calls      time  avg time    %calls     %time
ppscalapack_eig              1    6.3244    6.3244        10    90.082
ppscalapack_inv              2   0.62992   0.31496        20    8.9723
ppdense_scalar_op            1  0.014254  0.014254        10   0.20303
ppdense_binary_op            1  0.012628  0.012628        10   0.17987
ppdense_sumv                 1  0.009353  0.009353        10   0.13322
ppdense_rand                 1  0.009036  0.009036        10    0.1287
ppbase_setoption             1   0.00856   0.00856        10   0.12192
ppdense_transpose            1  0.006571  0.006571        10  0.093594
ppdense_sum                  1  0.005996  0.005996        10  0.085404
Total                       10    7.0208   0.70208                    

The ppprofile information is ordered in columns and displays, from left to right, the server 
function called, the number of function calls, the time spent inside the function, the average 
time spent inside the function per function call, the percentage of function calls, and the 
percentage of time spend inside the function. For the full range of functionality of ppprofile 
please consult the Command Reference Guide or type help ppprofile in Star-P®.

pptic/pptoc

pptic/pptoc provides information complementary to the MATLAB tic/toc command. 
The latter provides the wall-clock time of the instructions enclosed by the tic/toc 
statement and the former provides information on the communication between the client and 
the server. 

The pptic/pptoc output displays:

• the number of messages and the number of bytes received by the server from the 
client and 

• the number of messages and the number of bytes sent from the server to the client.
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>> app = rand(1000*p);                                                
>> pptic; dpp = inv(app); pptoc;                                      
Client/server communication report:                                   
  Sent by server: 1 messages, 1.120e+02 bytes                         
  Received by server: 1 messages, 2.400e+01 bytes                     
  Total communication time: 4.840e-05 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 3.124e-01s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 3.219e-01 seconds                                         

In addition to the number of messages and bytes received and sent, pptic/pptoc shows 
the time spent on communication and calculation as well as the number of distribution 
changes needed to accomplish the instructions enclosed by the pptic/pptoc statement.

The two important pieces of information contained in pptic/pptoc that affect performance 
are the bytes received or sent and the number of distribution changes. 

Combining client variables and server variables in the expression will result in the movement 
of the client variable to the server, which will show up in the bytes received field. Since data 
movement is expensive, this is a possible place to enhance performance, especially if the 
expression happens to be located inside a looping construct. For example, compare the 
following two calculations:

Example 1

% Multiply client matrix and server matrix
>> A = rand(1000);                                                    
>> Bpp = rand(1000*p);                                                
>> tic; pptic; Cpp = A * Bpp; pptoc; toc;                             
Client/server communication report:                                   
  Sent by server: 2 messages, 1.840e+02 bytes                         
  Received by server: 2 messages, 8.000e+06 bytes                     
  Total communication time: 6.799e-01 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 1.427e-01s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 8.771e-01 seconds                                         
Elapsed time is 0.877322 seconds.                                     

Example 2

% Multiply two server matrices
>> App = rand(1000*p);                                                
>> Bpp = rand(1000*p);                                                
>> tic; pptic; Cpp = App * Bpp; pptoc; toc;                           
Client/server communication report:                                   
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  Sent by server: 1 messages, 9.600e+01 bytes                         
  Received by server: 1 messages, 4.000e+01 bytes                     
  Total communication time: 6.127e-05 seconds                         
Server processing report:                                             
  Duration of calculation on server (wall clock time): 1.149e-01s     
  #ppchangedist calls: 0                                              
----------------------------------------------------------------------
Total time: 1.251e-01 seconds                                         
Elapsed time is 0.125299 seconds. 

In the first example, you see that number of bytes received by the server is exactly the size of 
App, 1000*1000*8 bytes = 8 MB, and that the communication took 1.16 sec. 

In the second example, the number of bytes received is 212 or 37,000 times smaller. These 
212 bytes contain the instructions to the server that specify what operations need to be 
performed. The penalty you pay in the first example is 1.16 sec of data transfer, which could 
have been prevented by creating the variable App on the server instead of on the client.

The number of distribution changes reported by pptic/toc indicates how often Star-P® 
needed to make a temporary change to the distribution of a variable, for example, from row to 
column distributed, in order to perform a set of instructions. Distribution changes cost time 
and should be avoided whenever possible when optimizing code for performance (note that 
distribution changes become more expensive for slower interconnects between the 
processors, e.g., clusters). In general, keeping the distributions of all variables aligned, i.e., 
all row distributed or all column distributed, prevents distribution changes and improves 
performance. 
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Chapter 7
Supported MATLAB® Functions

This chapter lists the MATLAB1 functions supported by Star-P®. The table in the section titled 
“Data Parallel Functions Listed Alphabetically” lists the supported data parallel functions in 
alphabetical order, while the tables in the section titled “Task-Parallel Functions Listed by 
Default Platform TPE” list task-parallel functions for what is referred to as “ppeval()” mode.

Refer to the support web page, http://www.interactivesupercomputing.com/support, for the most 
up-to-date function status.

Sparse matrices and functions operating on sparse matrices cannot currently be passed into 
a ppeval call, but may be used within the function called by ppeval.

Data Parallel Functions Listed Alphabetically

Table 1 lists the MATLAB® functions available for Data-Parallel Computing with Star-P® 
Release 2.7 x86/64 or Itanium-based Servers.

1. MATLAB® is a registered trademark of The MathWorks, Inc. Star-P® and the "star p" logo are 
registered trademarks of Interactive Supercomputing, Inc. Other product or brand names are 
trademarks or registered trademarks of their respective holders. ISC's products are not spon-
sored or endorsed by The MathWorks, Inc. or by any other trademark owner referred to in this 
document.

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array

abs  elfun Yes Yes

acosd  elfun Yes Yes

acos  elfun Yes Yes

acosh  elfun Yes Yes

acotd  elfun Yes
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acot  elfun

acoth  elfun

acscd  elfun Yes Yes

acsc  elfun

acsch  elfun

all  ops Yes Yes

and  ops Yes Yes

angle  elfun Yes Yes

any  ops Yes Yes

asecd  elfun Yes Yes

asec  elfun

asech  elfun

asind  elfun Yes Yes

asin  elfun Yes Yes

asinh  elfun Yes Yes

atan2  elfun Yes Yes

atand  elfun Yes

atan  elfun Yes Yes

atanh  elfun Yes Yes

blkdiag  elmat Yes Yes

cat  elmat Yes Yes

ceil  elfun Yes Yes

cell  datatypes Yes

chol  matfun Yes

clpxpair  elfun

colon  ops

colperm  sparfun Yes

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array
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compan  elmat Yes Yes

complex  elfun Yes

cond  matfun Yes

conj  elfun Yes Yes

cosd  elfun Yes Yes

cos  elfun Yes Yes

cosh  elfun Yes Yes

cotd  elfun Yes

cot  elfun

coth  elfun

cov  datafun Yes Yes

cscd  elfun Yes

csc  elfun

csch  elfun

ctranspose (')  ops Yes Yes

cumprod  datafun Yes Yes

cumsum  datafun Yes Yes

deal  datatypes Yes Yes

diag  elmat Yes Yes

diff  datafun Yes

disp  lang Yes Yes

display  lang Yes Yes

dot  specfun Yes Yes

double  datatypes

eig  matfun Yes

eigs  sparfun Yes

ellipke  specfun Yes

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array
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end  lang Yes Yes

eq  ops Yes Yes

exp  elfun Yes Yes

expm1  elfun Yes Yes

eye  elmat

factorial  specfun

factor  specfun

false  elmat

fft2  datafun Yes

fft  datafun Yes

fftshift  datafun Yes

find  elmat Yes Yes

fix  elfun Yes Yes

flipdim  elmat Yes

fliplr  elmat Yes Yes

flipud  elmat Yes Yes

fprintf  iofun Yes Yes

freqspace  elmat

full  sparfun Yes Yes

ge  ops Yes Yes

gt  ops Yes Yes

hadamard  elmat

hankel  elmat Yes Yes

hess  matfun Yes

hex2dec  strfun

histc  datafun Yes

horzcat  ops Yes Yes

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array
164 Star-P® Programming Guide for Use with MATLAB® Release 2.7



Data Parallel Functions Listed Alphabetically
ifft2  datafun Yes

ifft  datafun Yes

ifftshift  datafun Yes

imag  elfun Yes Yes

ind2sub  elmat Yes

inf  elmat

invhilb  elmat

inv  matfun Yes

ipermute  elmat Yes

isa  datatypes Yes Yes

isempty  elmat Yes Yes

isequal  elmat Yes Yes

isequalwithequ
alnans

 elmat Yes Yes

isfinite  elmat Yes Yes

isfloat  datatypes Yes Yes

isinf  elmat Yes Yes

islogical  datatypes Yes Yes

isnan  elmat Yes Yes

isnumeric  datatypes Yes Yes

isprime  specfun Yes Yes

isreal  elfun Yes Yes

isspace  strfun Yes Yes

issparse  sparfun Yes Yes

kron  ops Yes

ldivide (.\)  ops Yes Yes

length  elmat Yes Yes

le  ops Yes Yes

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array
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linspace  elmat

log10  elfun Yes Yes

log1p  elfun Yes

log2  elfun Yes Yes

log  elfun Yes Yes

logical  datatypes Yes Yes

logspace  elmat

lt  ops Yes Yes

lu  matfun Yes

magic  elmat

max  datafun Yes Yes

mean  datafun Yes Yes

median  datafun Yes Yes

meshgrid  elmat Yes Yes

min  datafun Yes Yes

minus (-)  ops Yes Yes

mldivide (\)  ops Yes Yes

mod  elfun Yes Yes

mpower (^)  ops Yes Yes

mrdivide (/)  ops Yes Yes

mtimes (*)  ops Yes Yes

nan  elmat

nchoosek  specfun

ndgrid  elmat Yes

ndims  elmat Yes Yes

ne  ops Yes Yes

nnz  sparfun Yes Yes

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array
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normest  matfun Yes

norm  matfun Yes Yes

not  ops Yes Yes

num2str  strfun

numel  elmat Yes Yes

ones  elmat

or  ops Yes Yes

orth  matfun Yes

permute  elmat Yes

pinv  matfun Yes

planerot  matfun Yes Yes

plus (+)  ops Yes Yes

pol2cart  specfun Yes

power (.^)  ops Yes Yes

prod  datafun Yes Yes

qr  matfun Yes

rand  elmat

randn  elmat

rank  matfun Yes

rdivide (./)  ops Yes Yes

real  elfun Yes Yes

rem  elfun Yes Yes

repmat  elmat

reshape  elmat Yes Yes

rot90  elmat Yes Yes

round  elfun Yes Yes

schur  matfun Yes

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array
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secd  elfun Yes

sec  elfun

sech  elfun

sign  elfun Yes Yes

sind  elfun Yes Yes

sin  elfun Yes Yes

sinh  elfun Yes Yes

size  elmat Yes Yes

sort  datafun Yes Yes

sortrows  datafun Yes Yes

sparse  sparfun Yes Yes

spaugment  sparfun Yes Yes

spdiags  sparfun Yes Yes

speye  sparfun

spfun  sparfun Yes

sph2cart  specfun Yes

spones  sparfun Yes

sprandn  sparfun

sprand  sparfun

sprintf  strfun Yes Yes

sqrt  elfun Yes Yes

sqrtm  matfun Yes

squeeze  elmat Yes

std  datafun Yes Yes

sub2ind  elmat Yes

subsasgn  ops Yes Yes

subsindex  ops Yes Yes

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array
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subsref  ops Yes Yes

sum  datafun Yes Yes

svd  matfun Yes

svds  sparfun Yes Yes

tand  elfun Yes Yes

tan  elfun Yes Yes

tanh  elfun Yes Yes

times (.*)  ops Yes Yes

toeplitz  elmat Yes Yes

trace  matfun Yes Yes

transpose (.')  ops Yes Yes

tril  elmat Yes Yes

triu  elmat Yes Yes

true  elmat

uminus (-)  ops Yes Yes

union  ops Yes Yes

unique  ops Yes Yes

unwrap  elfun Yes

uplus (+)  ops Yes Yes

vander  elmat Yes Yes

var  datafun Yes

vertcat  ops Yes Yes

xor  ops Yes Yes

zeros  elmat

Table 1  Data-Parallel Functions

MATLAB 
Function

 Function Class  Dense Array  Sparse Array
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Task-Parallel Functions Listed by Default Platform TPE

Table 2 lists the MATLAB® functions available for Default Task Parallel Engine (TPE) for 
SGI-Altix/Itanium-based Servers Star-P® Release 2.7 and optional TPE for x86/64-based 
Servers.

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class

conv  datafun

corrcoef  datafun

cov  datafun

cumprod  datafun

cumsum  datafun

cumtrapz  datafun

deconv  datafun

del2  datafun

detrend  datafun

diff  datafun

fft  datafun

fft2  datafun

fftn  datafun

fftshift  datafun

filter  datafun

filter2  datafun

gradient  datafun

hist  datafun

ifft  datafun

ifftn  datafun

max  datafun

mean  datafun

median  datafun
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min  datafun

prod  datafun

sort  datafun

sortrows  datafun

std  datafun

sum  datafun

trapz  datafun

var  datafun

 

cast  datatypes

cell  datatypes

cell2mat  datatypes

cell2struct  datatypes

cellfun  datatypes

class  datatypes

deal  datatypes

double  datatypes

fieldnames  datatypes

func2str  datatypes

functions  datatypes

getfield  datatypes

isa  datatypes

iscell  datatypes

isfield  datatypes

isnumeric  datatypes

isstruct  datatypes

logical  datatypes

mat2cell  datatypes

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class
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num2cell  datatypes

orderfields  datatypes

rmfield  datatypes

setfield  datatypes

single  datatypes

str2func  datatypes

struct  datatypes

struct2cell  datatypes

 

abs  elfun

acos  elfun

acosh  elfun

acot  elfun

acoth  elfun

acsc  elfun

acsch  elfun

angle  elfun

asec  elfun

asech  elfun

asin  elfun

asinh  elfun

atan  elfun

atan2  elfun

atanh  elfun

ceil  elfun

clpxpair  elfun

complex  elfun

conj  elfun

Table 2  Default TPE Functions for Altix/Itanium  
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cos  elfun

cosh  elfun

cot  elfun

coth  elfun

csc  elfun

csch  elfun

exp  elfun

fix  elfun

imag  elfun

isreal  elfun

log  elfun

log10  elfun

log2  elfun

mod  elfun

nextpow2  elfun

nthroot  elfun

pow2  elfun

real  elfun

rem  elfun

round  elfun

sec  elfun

sech  elfun

sign  elfun

sin  elfun

sind  elfun

sinh  elfun

sqrt  elfun

tan  elfun

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class
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tanh  elfun

unwrap  elfun

blkdiag  elmat

cat  elmat

circshift  elmat

compan  elmat

diag  elmat

eps  elmat

eye  elmat

find  elmat

flipdim  elmat

fliplr  elmat

flipud  elmat

flops  elmat

hankel  elmat

hilb  elmat

i  elmat

ind2sub  elmat

intmax  elmat

intmin  elmat

invhilb  elmat

ipermute  elmat

isempty  elmat

isequal  elmat

isequalwithequalnans  elmat

isinf  elmat

isnan  elmat

isscalar  elmat

Table 2  Default TPE Functions for Altix/Itanium  
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isvector  elmat

j  elmat

length  elmat

linspace  elmat

logspace  elmat

meshgrid  elmat

ndims  elmat

numel  elmat

ones  elmat

pascal  elmat

permute  elmat

pi  elmat

rand  elmat

randn  elmat

realmax  elmat

realmax  elmat

repmat  elmat

reshape  elmat

rosser  elmat

rot90  elmat

rref  elmat

shiftdim  elmat

size  elmat

squeeze  elmat

sub2ind  elmat

toeplitz  elmat

tril  elmat

triu  elmat

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class
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vander  elmat

wilkinson  elmat

zeros  elmat

 

fminbnd  funfun

fminsearch  funfun

fzero  funfun

inline  funfun

ode23  funfun

ode45  funfun

quad  funfun

quadl  funfun

vectorize  funfun

 

addpath  general

ans  general

beep  general

brighten  general

cd  general

clear  general

computer  general

delete  general

diary  general

dir  general

dos  general

echo  general

exit  general

fileattrib  general

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class
176 Star-P® Programming Guide for Use with MATLAB® Release 2.7



Task-Parallel Functions Listed by Default Platform TPE
format  general

genpath  general

getenv  general

isdir  general

ispc  general

isunix  general

load  general

ls  general

mex  general

mkdir  general

more  general

pack  general

path  general

pwd  general

quit  general

rehash  general

rmdir  general

rmpath  general

save  general

savepath  general

system  general

type  general

unix  general

ver  general

which  general

who  general

whos  general

 

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class
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clc  iofun

csvread  iofun

csvwrite  iofun

fclose  iofun

feof  iofun

ferror  iofun

fgetl  iofun

fgets  iofun

fileparts  iofun

filesep  iofun

fopen  iofun

fprintf  iofun

fread  iofun

frewind  iofun

fscanf  iofun

fseek  iofun

ftell  iofun

fullfile  iofun

fwrite  iofun

home  iofun

rename  iofun

tar  iofun

tempdir  iofun

tempname  iofun

textread  iofun

untar  iofun

unzip  iofun

 

Table 2  Default TPE Functions for Altix/Itanium  
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assignin  lang

break  lang

builtin  lang

case  lang

catch  lang

continue  lang

disp  lang

else  lang

elseif  lang

end  lang

error  lang

eval  lang

evalin  lang

exist  lang

feval  lang

for  lang

global  lang

if  lang

input  lang

inputname  lang

isglobal  lang

iskeyword  lang

isvarname  lang

keyboard  lang

lasterr  lang

lastwarn  lang

mislocked  lang

mlock  lang

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 179



Task-Parallel Functions Listed by Default Platform TPE
munlock  lang

nargchk  lang

nargin  lang

nargout  lang

otherwise  lang

persistent  lang

return  lang

switch   lang

try  lang

varargin  lang

varargout  lang

warning  lang

while  lang

 

 

MATLAB Function  Function Class

balance  matfun

chol  matfun

cond  matfun

det  matfun

eig  matfun

expm  matfun

hess  matfun

inv  matfun

logm  matfun

lu  matfun

norm  matfun

null  matfun

Table 2  Default TPE Functions for Altix/Itanium  
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orth  matfun

pinv  matfun

qr  matfun

qz  matfun

rank  matfun

schur  matfun

sqrtm  matfun

svd  matfun

trace  matfun

 

 

MATLAB Function  Function Class

all  ops

and  ops

any  ops

bitand  ops

bitcmp  ops

bitget  ops

bitmax  ops

bitor  ops

bitset  ops

bitshift  ops

bitxor  ops

eq  ops

ge  ops

gt  ops

horzcat  ops

intersect  ops

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class
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ismember  ops

kron  ops

ldivide (.\)  ops

le  ops

lt  ops

minus (-)  ops

mldivide (\)  ops

mpower (^)  ops

mrdivide (/)  ops

mtimes (*)  ops

ne  ops

not  ops

or  ops

plus (+)  ops

power (.^)  ops

rdivide (./)  ops

setdiff  ops

setxor  ops

times (.*)  ops

uminus (-)  ops

union  ops

unique  ops

uplus (+)  ops

vertcat  ops

xor  ops

 

interp1  polyfun

interp2  polyfun

Table 2  Default TPE Functions for Altix/Itanium  
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interpft  polyfun

mkpp  polyfun

pchip  polyfun

poly  polyfun

polyarea  polyfun

polyder  polyfun

polyfit  polyfun

polyval  polyfun

polyvalm  polyfun

ppval  polyfun

residue  polyfun

roots  polyfun

spline  polyfun

ss2tf  polyfun

unmkpp  polyfun

 

colamd  sparfun

colperm  sparfun

dmperm  sparfun

etree  sparfun

etreeplot  sparfun

full  sparfun

gplot  sparfun

issparse  sparfun

luinc  sparfun

nnz  sparfun

nonzeros  sparfun

nzmax  sparfun

Table 2  Default TPE Functions for Altix/Itanium  
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randperm  sparfun

spalloc  sparfun

sparse  sparfun

spconvert  sparfun

speye  sparfun

spfun  sparfun

spones  sparfun

spparms  sparfun

sprand  sparfun

sprandn  sparfun

sprandsym  sparfun

spy  sparfun

symamd  sparfun

 

airy  specfun

besselh  specfun

besseli  specfun

besselj  specfun

besselk  specfun

bessely  specfun

beta  specfun

betainc  specfun

betain  specfun

cart2pol  specfun

cart2sph  specfun

cross  specfun

dot  specfun

erf  specfun

Table 2  Default TPE Functions for Altix/Itanium  

MATLAB Function  Function Class
184 Star-P® Programming Guide for Use with MATLAB® Release 2.7



Task-Parallel Functions Listed by Default Platform TPE
erfc  specfun

erfinv  specfun

gamma  specfun

gammainc  specfun

gammaln  specfun

gcd  specfun

hsv2rgb  specfun

lcm  specfun

legendre  specfun

perms  specfun

pol2cart  specfun

primes  specfun

rgb2hsv  specfun

sph2cart  specfun

 

base2dec  strfun

bin2dec  strfun

blanks  strfun

cellstr  strfun

char  strfun

deblank  strfun

dec2base  strfun

dec2bin  strfun

dec2hex  strfun

findstr  strfun

hex2dec  strfun

hex2num  strfun

int2str  strfun

Table 2  Default TPE Functions for Altix/Itanium  
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iscellstr  strfun

ischar  strfun

isletter  strfun

isspace  strfun

isstr  strfun

lower  strfun

mat2str  strfun

num2str  strfun

regexp  strfun

regexpi  strfun

regexprep  strfun

setstr  strfun

sprintf  strfun

sscanf  strfun

str2double  strfun

str2mat  strfun

str2num  strfun

strcat  strfun

strcmp  strfun

strcmpi  strfun

strfind  strfun

strjust  strfun

strmatch  strfun

strncmp  strfun

strncmpi  strfun

strrep  strfun

strtok  strfun

strtrim  strfun

Table 2  Default TPE Functions for Altix/Itanium  
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Table 3 lists the MATLAB® functions available for Star-P® Release 2.7 Default Task-Parallel 
Engine (TPE) for x86/64-based Servers.

strvcat  strfun

upper  strfun

 

calendar  timefun

clock  timefun

cputime  timefun

date  timefun

datenum  timefun

datestr  timefun

datevec  timefun

eomday  timefun

etime  timefun

now  timefun

pause  timefun

weekday  timefun

iqr  timeseries

Table 3  Default TPE Functions for x86/64

MATLAB Function  Function Class

blkdiag  Arrays and Matrices

compan  Arrays and Matrices

cross  Arrays and Matrices

cumprod  Arrays and Matrices

cumsum  Arrays and Matrices

diag  Arrays and Matrices

dot  Arrays and Matrices

Table 2  Default TPE Functions for Altix/Itanium  
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eye  Arrays and Matrices

full  Arrays and Matrices

hadamard  Arrays and Matrices

hankel  Arrays and Matrices

horzcat  Arrays and Matrices

ind2sub  Arrays and Matrices

ipermute  Arrays and Matrices

issparse  Arrays and Matrices

length  Arrays and Matrices

logspace  Arrays and Matrices

magic  Arrays and Matrices

ndims  Arrays and Matrices

nnz  Arrays and Matrices

nonzeros  Arrays and Matrices

numel  Arrays and Matrices

ones  Arrays and Matrices

pascal  Arrays and Matrices

permute  Arrays and Matrices

pinv  Arrays and Matrices

rand  Arrays and Matrices

randn  Arrays and Matrices

repmat  Arrays and Matrices

reshape  Arrays and Matrices

rosser  Arrays and Matrices

rot90  Arrays and Matrices

shiftdim  Arrays and Matrices

size  Arrays and Matrices

squeeze  Arrays and Matrices

Table 3  Default TPE Functions for x86/64
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sub2ind  Arrays and Matrices

sum  Arrays and Matrices

toeplitz  Arrays and Matrices

vander  Arrays and Matrices

vectorize  Arrays and Matrices

vertcat  Arrays and Matrices

wilkinson  Arrays and Matrices

zeros  Arrays and Matrices

   

conv2  Data Analysis

cov  Data Analysis

cumtrapz  Data Analysis

del2  Data Analysis

detrend  Data Analysis

diff  Data Analysis

fft  Data Analysis

fft2  Data Analysis

fftn  Data Analysis

fftshift  Data Analysis

filter  Data Analysis

filter2  Data Analysis

gradient  Data Analysis

hist  Data Analysis

histc  Data Analysis

ifft  Data Analysis

ifft2  Data Analysis

ifftn  Data Analysis

Table 3  Default TPE Functions for x86/64
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ifftshift  Data Analysis

issorted  Data Analysis

mean  Data Analysis

median  Data Analysis

mldivide  Data Analysis

mrdivide  Data Analysis

quad  Data Analysis

quadl  Data Analysis

randperm  Data Analysis

rcond  Data Analysis

sort  Data Analysis

sortrows  Data Analysis

std  Data Analysis

trapz  Data Analysis

var  Data Analysis

   

cat  Data Types

cell  Data Types

cell2mat  Data Types

cell2struct  Data Types

cellfun  Data Types

cellstr  Data Types

char  Data Types

class  Data Types

deal  Data Types

dec2base  Data Types

dec2bin  Data Types

Table 3  Default TPE Functions for x86/64

MATLAB Function  Function Class
190 Star-P® Programming Guide for Use with MATLAB® Release 2.7



Task-Parallel Functions Listed by Default Platform TPE
dec2hex  Data Types

fieldnames  Data Types

findstr  Data Types

getfield  Data Types

hex2dec  Data Types

int16  Data Types

int2str  Data Types

int32  Data Types

int64  Data Types

int8  Data Types

intmax  Data Types

intmin  Data Types

isa  Data Types

iscell  Data Types

iscellstr  Data Types

ischar  Data Types

isequal  Data Types

isequalwithequalnans  Data Types

isfield  Data Types

isfinite  Data Types

isfloat  Data Types

isinf  Data Types

isinteger  Data Types

islogical  Data Types

isnan  Data Types

isnumeric  Data Types

isreal  Data Types

isscalar  Data Types

Table 3  Default TPE Functions for x86/64
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isstr  Data Types

isstruct  Data Types

isvector  Data Types

mat2cell  Data Types

mat2str  Data Types

num2cell  Data Types

num2hex  Data Types

num2str  Data Types

orderfields  Data Types

rmfield  Data Types

setfield  Data Types

setstr  Data Types

str2double  Data Types

str2mat  Data Types

str2num  Data Types

struct  Data Types

struct2cell  Data Types

subsasgn  Data Types

subsref  Data Types

substruct  Data Types

uint16  Data Types

uint32  Data Types

uint64  Data Types

uint8  Data Types

FALSE  Data Types

TRUE  Data Types

   

calendar  Date and Time

Table 3  Default TPE Functions for x86/64
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clock  Date and Time

cputime  Date and Time

date  Date and Time

datenum  Date and Time

datevec  Date and Time

eomday  Date and Time

etime  Date and Time

now  Date and Time

tic  Date and Time

toc  Date and Time

weekday  Date and Time

   

addpath  Desktop Tools

cd  Desktop Tools

chdir  Desktop Tools

clear  Desktop Tools

delete  Desktop Tools

dir  Desktop Tools

dos  Desktop Tools

fileattrib  Desktop Tools

fileparts  Desktop Tools

filesep  Desktop Tools

format  Desktop Tools

fullfile  Desktop Tools

getenv  Desktop Tools

isdir  Desktop Tools

ispc  Desktop Tools

Table 3  Default TPE Functions for x86/64
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isunix  Desktop Tools

load  Desktop Tools

mfilename  Desktop Tools

mkdir  Desktop Tools

path  Desktop Tools

pathsep  Desktop Tools

pwd  Desktop Tools

rmdir  Desktop Tools

rmpath  Desktop Tools

save  Desktop Tools

setenv  Desktop Tools

system  Desktop Tools

tempdir  Desktop Tools

tempname  Desktop Tools

unix  Desktop Tools

ver  Desktop Tools

version  Desktop Tools

which  Desktop Tools

who  Desktop Tools

whos  Desktop Tools

   

abs  Elementary Math

acos  Elementary Math

acosd  Elementary Math

acosh  Elementary Math

acot  Elementary Math

acotd  Elementary Math

acoth  Elementary Math

Table 3  Default TPE Functions for x86/64
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acsc  Elementary Math

acscd  Elementary Math

acsch  Elementary Math

airy  Elementary Math

all  Elementary Math

and  Elementary Math

angle  Elementary Math

any  Elementary Math

asec  Elementary Math

asecd  Elementary Math

asech  Elementary Math

asin  Elementary Math

asind  Elementary Math

asinh  Elementary Math

atan  Elementary Math

atan2  Elementary Math

atand  Elementary Math

atanh  Elementary Math

besselh  Elementary Math

besseli  Elementary Math

besselj  Elementary Math

besselk  Elementary Math

bessely  Elementary Math

beta  Elementary Math

betainc  Elementary Math

betaln  Elementary Math

bitand  Elementary Math

bitcmp  Elementary Math

Table 3  Default TPE Functions for x86/64
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bitget  Elementary Math

bitmax  Elementary Math

bitor  Elementary Math

bitset  Elementary Math

bitshift  Elementary Math

bitxor  Elementary Math

complex  Elementary Math

conj  Elementary Math

conv  Elementary Math

cos  Elementary Math

cosd  Elementary Math

cosh  Elementary Math

cot  Elementary Math

cotd  Elementary Math

coth  Elementary Math

cplxpair  Elementary Math

csc  Elementary Math

cscd  Elementary Math

csch  Elementary Math

ctranspose  Elementary Math

deconv  Elementary Math

eps  Elementary Math

eq  Elementary Math

erf  Elementary Math

erfc  Elementary Math

erfcx  Elementary Math

erfinv  Elementary Math

exp  Elementary Math

Table 3  Default TPE Functions for x86/64
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factor  Elementary Math

factorial  Elementary Math

find  Elementary Math

fix  Elementary Math

flipdim  Elementary Math

fliplr  Elementary Math

flipud  Elementary Math

floor  Elementary Math

gamma  Elementary Math

gammainc  Elementary Math

gammaln  Elementary Math

gcd  Elementary Math

ge  Elementary Math

gt  Elementary Math

hypot  Elementary Math

i  Elementary Math

imag  Elementary Math

inf  Elementary Math

intersect  Elementary Math

ipermute  Elementary Math

ismember  Elementary Math

isprime  Elementary Math

j  Elementary Math

lcm  Elementary Math

ldivide  Elementary Math

le  Elementary Math

legendre  Elementary Math

linspace  Elementary Math

Table 3  Default TPE Functions for x86/64
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log  Elementary Math

log10  Elementary Math

log1p  Elementary Math

log2  Elementary Math

lt  Elementary Math

max  Elementary Math

min  Elementary Math

minus  Elementary Math

mod  Elementary Math

mpower  Elementary Math

nan  Elementary Math

nchoosek  Elementary Math

ne  Elementary Math

nextpow2  Elementary Math

not  Elementary Math

nthroot  Elementary Math

or  Elementary Math

perms  Elementary Math

pi  Elementary Math

plus  Elementary Math

polyder  Elementary Math

polyfit  Elementary Math

polyval  Elementary Math

polyvalm  Elementary Math

pow2  Elementary Math

power  Elementary Math

primes  Elementary Math

prod  Elementary Math

Table 3  Default TPE Functions for x86/64
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rat  Elementary Math

rdivide  Elementary Math

real  Elementary Math

realmax  Elementary Math

realmin  Elementary Math

rem  Elementary Math

residue  Elementary Math

round  Elementary Math

sec  Elementary Math

secd  Elementary Math

sech  Elementary Math

setdiff  Elementary Math

setxor  Elementary Math

sign  Elementary Math

sin  Elementary Math

sind  Elementary Math

sinh  Elementary Math

sqrt  Elementary Math

tan  Elementary Math

tand  Elementary Math

tanh  Elementary Math

times  Elementary Math

transpose  Elementary Math

union  Elementary Math

unique  Elementary Math

unwrap  Elementary Math

uplus  Elementary Math

xor  Elementary Math

Table 3  Default TPE Functions for x86/64
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csvread  FileIO

csvwrite  FileIO

disp  FileIO

dlmread  FileIO

dlmwrite  FileIO

fclose  FileIO

feof  FileIO

ferror  FileIO

fgetl  FileIO

fgets  FileIO

fopen  FileIO

fprintf  FileIO

fputs  FileIO

fread  FileIO

frewind  FileIO

fscanf  FileIO

fseek  FileIO

ftell  FileIO

fwrite  FileIO

ls  FileIO

contour  Graphics

contourc  Graphics

inpolygon  Graphics

   

cart2pol  Interpolation and Computational 
Geometry

Table 3  Default TPE Functions for x86/64
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cart2sph  Interpolation and Computational 
Geometry

interp1  Interpolation and Computational 
Geometry

interp2  Interpolation and Computational 
Geometry

interpft  Interpolation and Computational 
Geometry

meshgrid  Interpolation and Computational 
Geometry

mkpp  Interpolation and Computational 
Geometry

ndgrid  Interpolation and Computational 
Geometry

pchip  Interpolation and Computational 
Geometry

pol2cart  Interpolation and Computational 
Geometry

ppval  Interpolation and Computational 
Geometry

pwch  Interpolation and Computational 
Geometry

sph2cart  Interpolation and Computational 
Geometry

spline  Interpolation and Computational 
Geometry

unmkpp  Interpolation and Computational 
Geometry

accumarray  Linear Algebra

balance  Linear Algebra

chol  Linear Algebra

cholupdate  Linear Algebra

Table 3  Default TPE Functions for x86/64
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circshift  Linear Algebra

cond  Linear Algebra

det  Linear Algebra

eig  Linear Algebra

ellipke  Linear Algebra

expm  Linear Algebra

hess  Linear Algebra

hilb  Linear Algebra

inv  Linear Algebra

invhilb  Linear Algebra

kron  Linear Algebra

linsolve  Linear Algebra

logm  Linear Algebra

lu  Linear Algebra

mpower  Linear Algebra

mtimes  Linear Algebra

norm  Linear Algebra

null  Linear Algebra

ordeig  Linear Algebra

orth  Linear Algebra

planerot  Linear Algebra

poly  Linear Algebra

qr  Linear Algebra

qrdelete  Linear Algebra

qrinsert  Linear Algebra

qz  Linear Algebra

rank  Linear Algebra

roots  Linear Algebra

Table 3  Default TPE Functions for x86/64
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rref  Linear Algebra

schur  Linear Algebra

sqrtm  Linear Algebra

ss2tf  Linear Algebra

svd  Linear Algebra

trace  Linear Algebra

tril  Linear Algebra

triu  Linear Algebra

   

ode23  ODE

ode45  ODE

ode78  ODE

odeset  ODE

   

'  Operators and Special Characters

-  Operators and Special Characters

!  Operators and Special Characters

%  Operators and Special Characters

%{ %}  Operators and Special Characters

&  Operators and Special Characters

&&  Operators and Special Characters

( )  Operators and Special Characters

*  Operators and Special Characters

, Operators and Special Characters

.  Operators and Special Characters

.'  Operators and Special Characters

Table 3  Default TPE Functions for x86/64
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.( )  Operators and Special Characters

.*  Operators and Special Characters

..  Operators and Special Characters

...  Operators and Special Characters

./  Operators and Special Characters

.\  Operators and Special Characters

.^  Operators and Special Characters

/  Operators and Special Characters

:  Operators and Special Characters

;  Operators and Special Characters

@  Operators and Special Characters

[ ]  Operators and Special Characters

\  Operators and Special Characters

^  Operators and Special Characters

{ }  Operators and Special Characters

|  Operators and Special Characters

||  Operators and Special Characters

~  Operators and Special Characters

~=  Operators and Special Characters

+  Operators and Special Characters

<  Operators and Special Characters

<=  Operators and Special Characters

=  Operators and Special Characters

==  Operators and Special Characters

>  Operators and Special Characters

>=  Operators and Special Characters

   

Table 3  Default TPE Functions for x86/64
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assert  Programming

cast  Programming

else  Programming

elseif  Programming

end  Programming

error  Programming

exist  Programming

feval  Programming

for  Programming

func2str  Programming

global  Programming

if  Programming

lasterr  Programming

lasterror  Programming

lastwarn  Programming

nargchk  Programming

nargin  Programming

nargout  Programming

persistent  Programming

rethrow  Programming

return  Programming

str2func  Programming

switch  Programming

try  Programming

typecast  Programming

varargin  Programming

varargout  Programming

warning  Programming

Table 3  Default TPE Functions for x86/64
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while  Programming

blanks  String Functions

deblank  String Functions

isletter  String Functions

isspace  String Functions

lower  String Functions

regexp  String Functions

regexprep  String Functions

sprintf  String Functions

sscanf  String Functions

strcat  String Functions

strcmp  String Functions

strcmpi  String Functions

strfind  String Functions

strjust  String Functions

strmatch  String Functions

strncmp  String Functions

strncmpi  String Functions

strrep  String Functions

strtok  String Functions

strtrim  String Functions

strvcat  String Functions

upper  String Functions

Table 3  Default TPE Functions for x86/64
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Application Examples

Application Example: Image Processing Algorithm

The application examples in this section show pattern matching for an input image and a 
target image using the Fourier transform of the image, or, in basic terms, Fourier pattern 
matching.

The program performs Fourier analysis of an input image and a target image. This analysis 
tries to locate the target image within the input image. Correlation peaks show where the 
target image exists. The output matrix shows where high correlation exists in the Fourier 
plane. In other words, X marks the spot. 

How the Analysis Is Done

The analysis in this simplified application takes the transform of the input and target images, 
multiplies the elements of the transforms, and then transforms the product back. This results 
in correlation peaks located where the target image is located within the input image. Since 
the image is in color, the processing is performed within three different color spaces, 
correlation matches occur three times. Strong peaks exist in the image along with the 
possibility of some noise. To further data reduce the image, a threshold is used which 
reduces the information to a two dimensional (2D) binary map. The image of the 2D binary 
map reduces the three color space images into a single binary map indicating the locations of 
the target image. The location of the ones (1) indicate the position of the target image within 
the input image.In this example, the ones exist in four separate clusters and the centroid of 
each cluster indicates the center location of the target image.
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Application Examples

There are three application examples given in this section:

• An example not using Star-P®, see "Application Example Not Using Star-P®".

• An example using *p to distribute the computation, see "Application Example Using 
Star-P®".

• An example using ppeval to distribute the computation see "Application Example 
Using ppeval".

Images For Application Examples

The images used for the examples are shown in the figures below. 

Figure A-1: Target Image

Figure A-2: Input Image

M Files for the Application Examples

There are two .m files used in each example. The files used for each example are as follows:

• Without Star-P® Example uses:

• patmatch_colordemo_noStarP.m
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• patmatch_calc.m

• With Star-P® Example uses:

• patmatch_colordemo_StarP.m

• patmatch_calc.m

• ppeval example uses:

• patmatch_color_ppeval.m

• patmatch_calc.m

Note: The patmatch_calc.m file is the same for all three examples.

M files are text files which typically contain the following information:

Application Example Not Using Star-P®

The following provides the actual flow for this application example where Star-P® is not used. 
The M files associated with this example are shown immediately after this table. 

File Element Description

Function definition 
line

Informs MATLAB that the M-file 
contains a function. This line 
defines function number and the 
number and order of input and 
output arguments

Function or script 
body

Program code that performs the 
actual computations and assigns 
values to any output arguments

Comments Text in the body of the program that 
explains the internal workings of 
the program

Step Description

1 The input image Figure A-2: is separated into Hue, Saturation 
and Value (HSV).

2 The image is tiled and replicated. The color constituent parts are 
each replicated in a tiling fashion to make a larger H, S, and V 
images. 
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patmatch_color_noStarP.m File

The following is the sample file that contains the program code for the application example. 
The numbers on the left correspond to the table in the previous section.

>> type patmatch_colordemo_noStarP                                              
% Setup the variables                                                           
imr = 1; imc = 1;                 % Set number of image tiled in rows and columns
target = 'Twhite.PNG';
img = '500x500.PNG';

3 A correlation calculation is performed on the HSV components of 
the input and target images. The patchmatch_calc.m file is 
called. A pattern matching calculation is used. This particular 
function is called for each of the three HSV images. 

a. The function correlates the input and target image by 
padding the target image, which is assumed to be a 
smaller image. It is padded with bright regions or ones 
(1).

• 1 represents background

• 0 represents lack of background

Basically, the size input image is found and then 
the target image is padded to that size. The 
padded image is shifted into Fourier space 
assuring accuracy. 

b. The actual correlation is done by multiplying the 
Fourier transform input image times the complex 
conjugate of the target image. Next it takes the inverse 
transform of the two images and that creates the 
amplitude and phase of the correlation. To create the 
observable image, this product image is multiplied by 
its complex conjugate completing the correlation.

c. Once the correlation calculation is complete, the 
correlation image is scaled between zero and one for 
each of the HSV components.

4 A threshold operation is performed to find the target locations 
within the input image. The operation is performed for each of the 
HSV components and is done empirically to achieve the display 
result through a map of the input image.

5 Displays the results which is a fully reduced, binary map of the 
target image location.

Step Description
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thres = 0.85;
% Load the data, comes in RGB, transfer to HSV space
a = rgb2hsv(imread(img   ));      % Get the image containing targets
b = rgb2hsv(imread(target));      % Get the filter mask
% Setup the input image tiling problem
if imr > 1 || imc > 1
    a = repmat(a,imr,imc);
end
% Perform correlation calculation in HSV space
d = zeros(size(a));
for i = 1:3
    d(:,:,i) = patmatch_calc(a(:,:,i),b(:,:,i));
end
% Threshold for finding target within input image
e = (1-d(:,:,2)) > 0.5 & d(:,:,3) > thres;
%Display the result
figure(1);
imagesc(hsv2rgb(a)); colormap jet;  title('Input Image');
figure(2);
imagesc(hsv2rgb(b)); colormap jet;  title('Filter Pattern');
figure(3);
imagesc(d(:,:,1));   colormap jet;  title('Correlation H');
figure(4);
imagesc(1-d(:,:,2)); colormap jet;  title('Correlation S');
figure(5);
imagesc(d(:,:,3));   colormap jet;  title('Correlation V');
figure(6);
imagesc(e);          colormap gray; title('Threshold Correlation');

patmatch_calc.m

This is the contents of the calculation file that is called by patmatch_color_noStarP.m, 
patmatch_color_StarP.m, and patmatch_color_ppeval.m.

>> type patmatch_calc.m                                                          
function corr = patmatch_calc(a,b)                                               
%                                                                               
% Pad the target input with bright areas to the size of the input image                
%                                                                               
[I,J]=ind2sub(size(b),1:numel(b));                                              
pad = ones(size(a));                            
% Pad the target with ones, bright, to size of 'a'  
pad(sub2ind(size(pad),floor(size(pad,1)/2)+(I-floor(size(b,1)/2)), ...           
                      floor(size(pad,2)/2)+(J-floor(size(b,2)/2))))=b; 
% Adjust the filter to the FFT space                                       
pad = fftshift(pad);                                                             
% Calculate the pattern match of input image a with the target filter b                
% Multiply Fourier transform of the input and target                                 
c = ifft2(fft2(a).*conj(fft2(pad)));            
% Measured optical intensity 
d = c.*conj(c);                                 
% Normalize the image to the tallest peak       
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corr = (d-min(min(d)))/max(max(d-min(min(d)))); 

Application Example Using Star-P®

The following provides the actual flow for this application example using Star-P®. The M files 
associated with this example are shown immediately after this table. 

patmatch_colordemo_StarP.m File

The following is the sample file that contains the program code for the application example. 
The numbers on the left correspond to the table in the previous section. Only the differences 
from the "Application Example Not Using Star-P®" are described.

>> type patmatch_colordemo_StarP
% Setup the variables
imr = 1; imc = 1;             % Set number of image tiled in rows and columns
target = 'Twhite.JPG';
img = '500x500.JPG';
thres = 0.85;
% Load the data, comes in RGB, transfer to HSV space
a = rgb2hsv(imread(img   ));  % Get the image containing targets
b = rgb2hsv(imread(target));  % Get the filter mask
% Transfer image data to the server

Step Description

1 The input image is loaded and separated as previously described 
in "Application Example Not Using Star-P®". The main difference 
is that each of these images are transferred to the backend 
(server or HPC). From this point every subsequent operation or 
computation that occurs will occur on the backend.

2 This tiled image is now created on the backend. See "Application 
Example Not Using Star-P®".

3 The correlation calculation as described previously for 
"Application Example Not Using Star-P®" is performed on the 
backend. 

The patmatch_calc.m file is identical as for "Application 
Example Not Using Star-P®" except the calculation is performed 
on the backend. No changes required.

4 The threshold operation is performed on the backend (see 
"Application Example Not Using Star-P®").

5 The ppfront function moves the data to the frontend or client for 
viewing. (see "Application Example Not Using Star-P®").
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a = ppback(a);
% Setup the input image tilling problem
if imr > 1 | imc > 1
    a = repmat(a,imr,imc);
end
% Perform correlation calculation in HSV space
d = zeros(size(a));
for i = 1:3
    d(:,:,i) = patmatch_calc(a(:,:,i),b(:,:,i));
end
% Threshold for finding target within input image
e = (1-d(:,:,2)) > 0.5 & d(:,:,3) > thres;
% Transfer results to the client
a = ppfront(a);
d = ppfront(d);
e = ppfront(e);
% Display the result
figure(1);
imagesc(hsv2rgb(a)); colormap jet;  title('Input Image');
figure(2);
imagesc(hsv2rgb(b)); colormap jet;  title('Filter Pattern');
figure(3);
imagesc(d(:,:,1));   colormap jet;  title('Correlation H');
figure(4);
imagesc(1-d(:,:,2)); colormap jet;  title('Correlation S');
figure(5);
imagesc(d(:,:,3));   colormap jet;  title('Correlation V');
figure(6);
imagesc(e);          colormap gray; title('Threshold Correlation');

Application Example Using ppeval

The following provides the actual flow for this application example using ppeval. The M files 
associated with this example are shown immediately after the table. 

About ppeval

ppeval executes embarrassingly parallel operations in a task parallel mode. The tasks are 
completely independent and are computed individually, with access only to local data. For 
example, if there are four function evaluations to be computed and Star-P® has four 
processors allocated, ppeval takes the function to be evaluated and sends it to each of the 
four processors for calculation.

About the ppeval Example

This function takes the HSV components for the input and target images and calculates all 
the correlations for each of these components simultaneously. 
Release 2.7 Star-P® Programming Guide for Use with MATLAB® 213



Application Examples

Tiling is not
included. It
limits

2

performance
gains.

Correlation
calculations
performed on

3

three backend
processors
The technical explanation of the computation is identically the same as the previous example 
and is eliminated for brevity. The key difference in using the patmatch_calc function is the 
setup of ppeval that calls this function.

In the case of item 5, ppeval calls patmach_calc with the input image a and target image b. 
The parallelization is performed with the split function that breaks the input and target images 
into their respective HSV components. The split in each case is along the 3rd dimension. If 
you have three processors, processor 1 gets the H component, processor 2 gets the S 
component, and processor 3 gets the V component.

When ppeval executes, patmatch_calc is executed simultaneously on three processors.

patmatch_color_ppeval.m

The following is the sample file that contains the program code for the application example. 
The numbers on the left correspond to the table in the previous section. Only the differences 
from the "Application Example Not Using Star-P®" are described. 

>> type patmatch_colordemo_ppeval
% Setup the variables
imr = 1; imc = 1;             % Set number of image tiled in rows and columns
target = 'Twhite.JPG';
img = '500x500.JPG';
thres = 0.85;
% Load the data, comes in RGB, transfer to HSV space
a = rgb2hsv(imread(img   ));  % Get the image containing targets
b = rgb2hsv(imread(target));  % Get the filter mask
% Setup the input image tiling problem

Step Description

1 The operation is the same as described for the previous two 
examples.

2 Not included for the ppeval because tiling to larger images or 
working with larger input images on a single processor limits the 
performance gains achieved by single processor calculation. In 
other words, single processor calculations provide performance 
on small data sizes.

3 The correlation calculation as described for the previous two 
examples is performed on an individual processor on the 
backend. 

4 The operation is the same as described for the previous two 
examples.

5 The operation is the same as described for the previous two 
examples.
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if imr > 1 | imc > 1
    a = repmat(a,imr,imc);
end
% Perform correlation calculation in HSV space
d = ppeval('patmatch_calc',split(a,3),split(b,3));
% Threshold for finding target within input image
e = (1-d(:,:,2)) > 0.5 & d(:,:,3) > thres;
% Transfer results to the client
d = ppfront(d);
e = ppfront(e);
% Display the result
figure(1);
imagesc(hsv2rgb(a)); colormap jet;  title('Input Image');
figure(2);
imagesc(hsv2rgb(b)); colormap jet;  title('Filter Pattern');
figure(3);
imagesc(d(:,:,1));   colormap jet;  title('Correlation H');
figure(4);
imagesc(1-d(:,:,2)); colormap jet;  title('Correlation S');
figure(5);
imagesc(d(:,:,3));   colormap jet;  title('Correlation V');
figure(6);
imagesc(e);          colormap gray; title('Threshold Correlation');
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Appendix B
Solving Large Sparse Matrix and Combinatorial 
Problems with Star-P®

This chapter introduces a mode of thinking about a large class of combinatorial problems. 
Star-P® can be considered as a potential tool whenever you are faced with a discrete 
problem where quantitative information is extracted from a data structure such as those 
found on networks or in databases.

Sparse matrix operations are widely used in many contexts, but what is less well known is 
that these operations are powerfully expressive for formulating and parallelizing 
combinatorial problems. This chapter covers the basic theory and illustrates a host of 
examples. In many ways this chapter extends the notion that array syntax is more powerful 
than scalar syntax by applying this syntax to the structures of a class of real-world problems.

At the mathematical level, a sparse matrix is simply a matrix with sufficiently many zeros that 
it is sensible to save storage and operations by not storing the zeros or performing 
unnecessary operations on zero elements such as x+0 or x*0. For example, the discretization 
of partial differential equations typically results in large sparse linear systems of equations. 
Sparse matrices and the associated algorithms are particularly useful for solving such 
problems.

Sparse matrices additionally specify connections and relations among objects. Simple 
discrete operations including data analysis, sorting, and searching can be expressed in the 
language of sparse matrices.

Graphs and Sparse Matrices

Graphs are used for networks and relationships. Sparse matrices are the data structures 
used to represent graphs and to perform data analysis on large data sets represented as 
graphs.

Graphs: It’s all in the connections

In the following discussion, a “graph” is simply a group of discrete entities and their 
connections. While standard, the term is not especially illuminating, so it may be helpful to 
consider a graph as a “network”. Think of a phone network or a computer network or a social 
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network. The most important thing to know are the names and who is connected to whom. 
Formally, a graph is a set of nodes and edges. It is the information of who can directly 
influence whom or at least who has a link to whom. 

Consider the route map of an airline. The nodes are cities, the edges are plane routes.

The earth is a geometrical object, i.e. continuous, yet the important information for the airline 
is the graph, the discrete object connecting the relevant cities. Next time you see a subway 
map, think of the graph connecting the train stops. Next time you look at a street map think of 
the intersections as nodes, and each street as an edge. 

Electrical circuits are graphs. Connect up resistors, batteries, diodes, and inductors. Ask 
questions about the resistance of the circuit. In high school one learns to follow Ohm’s law 
and Ampere’s law around the circuit. Graph theory gives the bigger picture. We can take a 
large grid of resistors and connect a battery across one edge. Looked at one way, this is a 
discrete man-made problem requiring a purchase of electrical components. 

The internet is a great source for graphs. We could have started with any communications 
network: telegraphs, telephones, smoke signals... but let us consider the internet. The 
internet can be thought of as the physical links between computers. The current internet is 
composed of various subnetworks of connected computers that are connected at various 
peering points. Run traceroute from your machine to another machine and take a walk along 
the edges of this graph. 

More exciting than the hardware connections are the virtual links. Any web page is a node; 
hyperlinks take us from one node to another. Web pages live on real hardware, but there is 
no obvious relationship between the hyperlinks connecting web pages and the wires 
connecting computers.

The graph that intrigues us all is the social graph: in its simplest form, the nodes are people. 
Two people are connected if they know each other.

A graph may be a discretization of a continuous structure. Think of the graph whose vertices 
are all the USGS benchmarks in North America, with edges joining neighboring benchmarks. 
This graph is a mesh: its vertices have coordinates in Euclidean space, and the discrete 
graph approximates the continuous surface of the continent. Finite element meshes are the 
key to solving partial differential equations on (finite) computers.

Graphs can represent computations. Compilers use graphs whose vertices are basic blocks 
of code to optimize computations in loops. The heart of a finite element computation might be 
the sparse matrix-vector multiplication in an iterative linear solver; the pattern of data 
dependency in the multiplication is the graph of the mesh.

Oftentimes graphs come with labels on their edges (representing length, resistance, cost) or 
vertices (name, location, cost).

There are so many examples -- some are discrete from the start, others are discretizations of 
continuous objects, but all are about connections.
218 Star-P® Programming Guide for Use with MATLAB® Release 2.7



Graphs and Sparse Matrices
Sparse Matrices: Representing Graphs and General Data Analysis

Consider putting everybody at a party in a circle holding hands and each person rates how 
well they know the person on the left and right with a number from 1 to 10.

Each person can be represented with the index i, and the rating of the person on the right can 
be listed as Ai,i+1 while the person on the left is listed as Ai,i-1.

As an example;

PERSON       Right  Left
1            5      6
2            3      2
3            1      9
4            2      7

In serial MATLAB

>> i = [1 2 3 4]; j = [2 3 4 1]; k = [4 1 2 3];
>> r = [5 3 1 2];                              
>> l = [6 2 9 7];                              
>> sparse([i i],[j k], [r l])                  
ans =                                          
   (2,1)        2                              
   (4,1)        2                              
   (1,2)        5                              
   (3,2)        9                              
   (2,3)        3                              
   (4,3)        7                              
   (1,4)        6                              
   (3,4)        1                              
>> full(ans)                                   
ans =                                          
     0     5     0     6                       
     2     0     3     0                       
     0     9     0     1                       
     2     0     7     0                       

With Star-P®

>> n = 1000*p;                                  
>> i = 1:n;                                     
>> j = ones(1,n);                               
>> j(1,1:end-1) = i(1,2:end); j(1,end) = i(1,1);
>> k = ones(1,n);                               
>> k(1,2:end) = i(1,1:end-1); k(1,1) = i(1,end);
>> r = rand(1,n);                               
>> l = rand(1,n);                               
>> A = sparse([i i], [j k], [r l])              
A =                                             
        dsparse object: 1000p-by-1000           
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The next example illustrates a circular network with unsymmetric weights.

>> B=spones(A)

gives the network without weights, and

>> [i,j] = find(B)                              
i =                                             
        ddense object: 2000p-by-1               
j =                                             
        ddense object: 2000p-by-1               

undoes the sparse construction.

Data Analysis and Comparison with Pivot Tables

Consider the following “database” style application:

Imagine we have an airline that flies certain routes on certain days of the week and we are 
interested in the revenue per route and per day. We begin with a table which can be simply 
an n x 3 array:

Route     Day    Revenue in Thousands
1         0      3
1         1      5
1         3      4
1         5      5
2         1      3
2         2      3
2         4      3
2         6      3
3         6      4
3         0      4

In Microsoft Excel, there is a little known feature that is readily available on the Data menu 
called PivotTable which allows for the analysis of such data.

MATLAB and Star-P® users can perform the same analysis with sparse matrices.

First we define the three column array:
>> m = [ 1 0 3; 1 1 5; 1 3 4; 1 5 5; 2 1 3; 2 2 3; 2 4 3; 2 6 3; 3 6 4; 3 0 4]
m =                                                                           
     1     0     3                                                            
     1     1     5                                                            
     1     3     4                                                            
     1     5     5                                                            
     2     1     3                                                            
     2     2     3                                                            
     2     4     3                                                            
     2     6     3                                                            
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     3     6     4                                                            
     3     0     4                                                            

Then we create the sparse matrix a:

>> a = sparse(m(:,1),m(:,2)+1,m(:,3))                                         
a =                                                                           
   (1,1)        3                                                             
   (3,1)        4                                                             
   (1,2)        5                                                             
   (2,2)        3                                                             
   (2,3)        3                                                             
   (1,4)        4                                                             
   (2,5)        3                                                             
   (1,6)        5                                                             
   (2,7)        3                                                             
   (3,7)        4                                                             

How much does each of the three routes make as revenue:

>> sum(a')                                                                    
ans =                                                                         
   (1,1)       17                                                             
   (1,2)       12                                                             
   (1,3)        8                                                             

Or what is the total for each day:

>> sum(a)                                                                     
ans =                                                                         
   (1,1)        7                                                             
   (1,2)        8                                                             
   (1,3)        3                                                             
   (1,4)        4                                                             
   (1,5)        3                                                             
   (1,6)        5                                                             
   (1,7)        7                                                             

Or what is the total revenue:

 >> sum(a(:))
ans =
     (1,1)       37

Since Star-P® extends the functionality of sparse matrices to parallel machines, one can do 
very sophisticated data analysis on large data sets using Star-P®.

Note that the sparse command also adds data with duplicate indices. 

If the sparse constructor encounters duplicate (i,j) indices, the corresponding nonzero 
values are added together. This is sometimes useful for data analysis; for example, here is an 
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example of a routine that computes a weighted histogram using the sparse constructor. In 
the routine, bin is a vector that gives the histogram bin number into which each input 
element falls. Notice that h is a sparse matrix with just one column! However, all the values of 
w that have the same bin number are summed into the corresponding element of h. The 
MATLAB function bar plots a bar chart of the histogram. 

>> type histw                                                            
function [yc, h] = histw(y, w, m)                                        
% HISTW Weighted histogram.                                              
%    [YC, H] = HISTW(Y, W, M) plots a histogram of the data in Y weighted
%    with W, using M boxes. The output YC contains the bin centers, and  
%    H the sum of the weights in each bin.                               
%                                                                        
%    Example:                                                            
%       y = rand(1e5,1);                                                 
%       histw(y,y.^2,50);                                                
dy = (max(y) - min(y)) /  m;                                             
bin = max(min(floor((y - min(y)) / dy) + 1, m), 1);                      
yy = min(y) + dy * (0:m);                                                
yc = (yy(1:end-1) + yy(2:end)) / 2;                                      
h = sparse(bin, 1, w, m, 1);                                             
bar(yc, full(h));                                                        

Multiplication of a sparse matrix by a dense vector (sometimes called “matvec”) turns out to 
be useful for many kinds of data analysis that have nothing directly to do with linear algebra. 
We will see several examples later that have to do with paths or searches in graphs. Here is 
a simple example that has to do with the nonzero structure of a matrix.

Suppose G is a dsparse matrix with nr rows and nc columns. For each row, we want to 
compute the average of the column indices of the nonzeros in that row (or zero if the whole 
row is zero, say). The result will be a ddense vector with nr elements. The following code 
does this. (The first line replaces each nonzero in G with a one; it can be omitted if, say, G is 
the adjacency matrix of a graph or a 0/1 logical matrix.)

>> Gpp = sprandn(1e6*p,1e4,0.01);                  
>> Gpp = spones(Gpp);                              
>> [nr, nc] = size(Gpp);                           
>> vpp = (1:nc*p)';                                
>> epp = ones(nc*p,1);                             
>> rowcounts = Gpp * epp;                          
>> indexsums = Gpp * vpp;                          
>> averageindex = indexsums ./ max(rowcounts, 1);

Since epp is a column of all ones, the first matvec Gpp*epp computes the number of 
nonzeros in each row of Gpp. The second matvec Gpp*vpp computes the sum of the column 
indices of the nonzeros in each row. The *max* in the denominator of the last line makes 
averageindex zero whenever a row has no nonzeros. 
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Laplacian Matrices and Visualizing Graphs

The Laplacian matrix is a matrix associated with an undirected graph. Like the adjacency 
matrix, it is square and symmetric and has a pair of nonzeros (i,j) and (j,i) for each edge (i,j) of 
the graph. However, the off-diagonal nonzero elements of the Laplacian all have value -1, 
and the diagonal element Li,i is the number of edges incident on vertex i. If A is the adjacency 
matrix of an undirected graph, one way to compute the Laplacian matrix is with the following:

 >> L = -spones(A);
 >> L = L - diag(diag(L));
 >> L = L + diag(sum(L));

This code is a little more general than it needs to be -- it doesn’t assume that all the nonzeros 
in A have value 1, nor does it assume that the diagonal of A is zero. If both of these are true, 
as in a proper adjacency matrix, it would be enough to say:

 >> L = diag(sum(A)) - A;

The Laplacian matrix has many algebraic properties that reflect combinatorial properties of 
the graph. For example, it is easy to see that the sums of the rows of L are all zero, so zero is 
an eigenvalue of L (with an eigenvector of all ones). It turns out that the multiplicity of zero as 
an eigenvalue is equal to the number of connected components of the graph. The other 
eigenvalues are positive, so L is a positive semidefinite matrix. The eigenvector 
corresponding to the smallest nonzero eigenvalue has been used in graph partitioning 
heuristics.

For a connected graph, the eigenvectors corresponding to the three smallest Laplacian 
eigenvalues can be used as vertex coordinates (the coordinates of vertex number i are (xi, yi, 
zi), where x, y, and z are the eigenvectors), and the result is sometimes an interesting picture 
of the graph. Figure B-1: is an example of this technique applied to the graph created in 
Kernel 1 of the SSCA#2 benchmark. 
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Figure B-1: 8192-vertex graph from Kern1 plotted with Fiedler coordinates

On Path Counting

You may want to know how many paths connect two nodes in a graph. The incidence matrix I 
is useful for this calculation, and is defined as:

Iij = {1 if node i is connected to node j, otherwise 0}

The matrix a in "Sparse Matrices: Representing Graphs and General Data Analysis" is 
actually an adjacency matrix. For any particular path length k, each element of I^k represents 
the number of paths that connect node i to node j.

>> a = spones(sprandn(100*p,100,0.1));
>> b = a^3                            
b =                                   
        ddense object: 100-by-100p    
>> b(14,23)                           
ans =                                 
     4                                
>> nnz(b)                             
ans =                                 
        9928                          

In this example there are 11 paths of length 3 that connect nodes 14 and 23. Another 
characteristic of the graph that can be gleaned from this calculation is that almost all of the 
nodes are reachable from all other nodes with a path of length 3 (9946 out of 10000 entries). 
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ppquit, 136, 145
ppsave, 51, 137, 151
ppsetoption, 136, 141

configuring for high performance, 90
warning messages, 51

ppstartup, 14
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data I/O directory, 16
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on a Windows client system, 10

startup.m, 14
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